A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gupta, R. C.

Paper Title Page
MOPAN118 High Field HTS Solenoid for Muon Cooling 446
  • S. A. Kahn, M. Alsharo'a, R. P. Johnson, M. Kuchnir
    Muons, Inc, Batavia
  • R. C. Gupta, R. B. Palmer, P. Wanderer, E. Willen
    BNL, Upton, Long Island, New York
  • D. J. Summers
    UMiss, University, Mississippi
  Funding: Work supported by U. S. Department of Energy under Contract DE-AC02-98CH1088 and SBIR Grant DE-FG02-04ER86191

The ability of high temperature superconducting (HTS) conductor to carry high currents at low temperatures makes feasible the development of very high field magnets for uses in accelerators and beam-lines. A specific application of a very high field solenoid is to provide a very small beta region for the final cooling stages for a muon collider. This paper will describe a conceptual design of a 50 Tesla solenoid based on Bi-2223 HTS tape, where the magnet will be operated at 4.2 K to take advantage of the high current carrying capacity at that temperature. A 25 Tesla solenoid has been run using a 5 Tesla Bi-2212 insert. The current carrying capacity of the BSCCO wire has been measured to be 266 Amps/mm2 at 4.2 K at the NHFML. This paper will describe the technical issues associated with building this 50 Tesla magnet. In particular it will address how to mitigate the large Lorentz stresses associated with the high field magnet and how to design the magnet to reduce the compressive end forces.

THPMS092 Superconducting Non-Scaling FFAG Gantry for Carbon/Proton Cancer Therapy 3199
  • D. Trbojevic, R. C. Gupta, B. Parker
    BNL, Upton, Long Island, New York
  • E. Keil
    CERN, Geneva
  • A. Sessler
    LBNL, Berkeley, California
  Funding: * Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. ** Work supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231

We report on improvements in the non-scaling Fixed Field Alternating Gradient (FFAG) gantry design. As we previously reported*, a major challenge of the carbon/proton cancer therapy facilities is isocentric gantry design. The weight of the isocentric gantry transport elements in the latest Heidelberg carbon/proton facility is 135 tons**. In this report we detail improvements to the previous non-scaling gantry design. We estimate that this non-scaling FFAG gantry would be almost hundred times lighter than traditional heavy ion gantries. Very strong focusing with small dispersion permits passage of different energies of carbon beams through the gantry's fixed magnetic field.*