A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Gough, R.

Paper Title Page
TUPAS045 Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source 1745
  • J. H. Vainionpaa, R. Gough, M. D. Hoff, J. W. Kwan, B. A. Ludewigt, M. J. Regis, J. G. Wallig, R. P. Wells
    LBNL, Berkeley, California
  Funding: Supported by Office of Science, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the U. S. Department of Homeland Security under contract No. HSHQBP-05-X-00033.

An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 with an atomic fraction > 90% was designed as a part of an Accelerator Driven Neutron Source (ADNS). The ion source was tested with an electrostatic low energy beam transport section (LEBT) and measured emittance data was compared to PBGUNS simulations. In our design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to generate a ~875 Gauss magnetic field on axis inside the source chamber. To prevent HV breakdown in the LEBT, a magnetic field clamp is necessary to minimize the field in this region. The microwave power is matched to the plasma by an autotuner. A significant improvement in the atomic fracion of the beam was achieved by installing a boron nitride liner inside the ion source