A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Godang, R.

Paper Title Page
THPMS082 Muon Acceleration to 750 GeV in the Tevatron Tunnel for a 1.5 TeV mu+ mu- Collider 3178
  • D. J. Summers, L. M. Cremaldi, R. Godang, B. R. Kipapa, H. E. Rice
    UMiss, University, Mississippi
  • R. B. Palmer
    BNL, Upton, Long Island, New York
  Funding: Work supported by DE-FG02-91ER40622 and DE-AC02-98CH10886.

Muon acceleration from 30 to 750 GeV in 72 orbits using two rings in the 1000m radius Tevatron tunnel is explored. The first ring ramps at 400 Hz and accelerates muons from 30 to 400 GeV in 28 orbits using 14 GV of 1.3 GHz superconducting RF. The ring duplicates the Fermilab 400 GeV main ring FODO lattice, which had a 61m cell length. Muon survival is 80%. The second ring accelerates muons from 400 to 750 GeV in 44 orbits using 8 GV of 1.3 GHz superconducting RF. The 30 T/m main ring quadrupoles are lengthened 87% to 3.3m. The four main ring dipoles in each half cell are replaced by three dipoles which ramp at 550 Hz from -1.8T to +1.8T interleaved with two 8T fixed superconducting dipoles. The ramping and superconducting dipoles oppose each other at 400 GeV and act in unison at 750 GeV. Muon survival is 92%. Two mm copper wire, 0.28mm grain oriented silicon steel laminations, and a low duty cycle mitigate eddy current losses. Low emittance muon bunches allow small aperatures and permit magnets to ramp with a few thousand volts. Little civil construction is required. The tunnel exists.