A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Geng, R. L.

Paper Title Page
WEPMS006 High Gradient Studies for ILC with Single Cell Re-entrant Shape and Elliptical Shape Cavities made of Fine-grain and Large-grain Niobium 2337
  • R. L. Geng, G. V. Eremeev, H. Padamsee, V. D. Shemelin
    CLASSE, Ithaca
  Funding: Work supported by DOE

Based on the encouraging results of the first 1300 MHz 70 mm aperture single cell re-entrant cavities*, we continue the high gradient studies for ILC with new re-entrant cavities made of fine-grain as well as large-grain niobium. These new cavities have smaller aperture of 60 mm, providing a further reduced Hpk/Eacc or a further improved ultimate gradient. Four 1300 MHz 60 mm aperture re-entrant cavities are made, two out of fine grain niobium and the other two out of large-grain niobium. In addition, two elliptical shape 1500 MHz cavities are also made out of large-grain niobium. We present the testing results of these cavities.

* R. L. Geng et al., PAC2005, p.653.

WEPMS007 Manufacture and Performance of Superconducting RF Cavities for Cornell ERL Injector 2340
  • R. L. Geng, P. Barnes, B. Clasby, J. Kaminski, M. Liepe, V. Medjidzade, D. Meidlinger, H. Padamsee, J. Sears, V. D. Shemelin, N. Sherwood, M. Tigner
    CLASSE, Ithaca
  Funding: Work supported by NSF

Six 1300 MHz superconducting niobium 2-cell cavities are manufactured for the prototype of Cornell ERL injector to boost the energy of a high current, low emittance beam produced by a DC gun. Designed for high current beam acceleration, these cavities have new characteristics as compared to previously developed low-current cavities such as those for TTF. Precision manufacture is emphasized for a better straightness of the cavity axis so as to avoid unwanted emittance dilution. We present the manufacturing, processing and vertical test performance of these cavities. We also present the impact of new cavity characteristics to the cavity performance as learnt from vertical tests. Solutions for improving cavity performance are discussed.