A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Furman, M. A.

Paper Title Page
TUXAB03 Self-consistent 3D Modeling of Electron Cloud Dynamics and Beam Response 764
 
  • M. A. Furman, C. M. Celata, M. Kireeff Covo, K. G. Sonnad, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • P. Stoltz
    Tech-X, Boulder, Colorado
 
  Funding: Work supported by the U. S. DOE under Contracts DE-AC02-05CH11231 and W-7405-Eng-48, and by the US-LHC Accelerator Research Project (LARP).

We present recent advances in the modeling of beam-electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

 
slides icon Slides  
TUPMN108 Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers 1164
 
  • C. M. Celata, M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • D. P. Grote
    LLNL, Livermore, California
 
  Funding: This work was supported by the Office of High Energy Physics of the U. S. Department of Energy under contract number No. DE-AC02-05CH11231.

Due to copious synchrotron radiation from the beam, electron cloud effects are predicted to be important in the wiggler sections of the ILC positron damping ring. In this area of the ring, the physics is inherently 3D. Moreover, a self-consistent calculation of the physics of the electron cloud/beam system is necessary for examining such phenomena as emittance growth in the beam. We present the first calculations of this system with the self-consistent 3D particle-in-cell code WARP/POSINST. The code includes self-consistent space charge for both species, mesh refinement, and detailed models of primary and secondary electron production. Interaction with electrons is assumed to occur only in the wigglers in this model– the beam is moved using maps between wiggler sections.

 
THPMN118 Modelling of E-cloud Build-up in Grooved Vacuum Chambers Using POSINST 2993
 
  • M. Venturini, M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
 
  Funding: Work supported by DOE contract No. DE-AC02-05CH11231

Electron cloud build-up and related beam instabilities are a serious concern for the positron damping ring of the International Linear Collider (ILC). To mitigate the effect use of grooved vacuum-chamber walls is being actively investigated in addition to more conventional techniques like surface coating, scrubbing, and/or conditioning. Experimental and simulation studies have characterized the effectiveness of the grooved surface by means of an effective secondary emission yield (SEY), which has been measured to be significantly lower than the SEY of a smooth surface of the same material. However, some inconsistencies of the results, and the need to model the experimental testing of the grooved surface concept in more detail, have motivated us to simulate the grooved surfaces directly. Specifically, we have augmented the code POSINST by adding the option to simulate the electron-cloud build-up in the presence of a grooved surface geometry. By computing the accumulated e-cloud density and comparing it with the same quantity computed for a smooth surface, we infer an effective SEY, and we thereby make contact with the effective SEY estimates obtained from previous studies.

 
THPAS008 Simulation of the Dynamics of Microwave Transmission Through an Electron Cloud 3525
 
  • K. G. Sonnad, M. A. Furman
    LBNL, Berkeley, California
  • J. R. Cary
    CIPS, Boulder, Colorado
  • P. Stoltz, S. A. Veitzer
    Tech-X, Boulder, Colorado
 
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231

Simulation studies are under way to analyze the dynamics of microwave transmission through a beam channel containing electron clouds. Such an interaction is expected to produce a shift in phase accompanied by attenuation in the amplitude of the microwave radiation. Experimental observation of these phenomena would lead to a useful diagnosis tool for electron clouds. This technique has already been studied* at the CERN SPS. Similar experiments are being proposed at the PEP-II LER at SLAC as well as the Fermilab MI. In this study, simulation results will be presented for a number of cases including those representative of the above mentioned experiments. The code VORPAL is being utilized to perform electromagnetic particle-in-cell (PIC) calculations. The results are expected to provide guidance to the above mentioned experiments as well as lead to a better understanding of the problem.

* T. Kroyer, F. Caspers, E. Mahner , pg 2212 Proc. PAC 2005, Knoxville, TN

 
FRPMS028 Simulations of Electron Cloud Effects on the Beam Dynamics for the FNAL Main Injector Upgrade 3985
 
  • K. G. Sonnad, C. M. Celata, M. A. Furman, D. P. Grote, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231.

The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This study involves a systematic assesment of beam instabilities due to the presence of electron clouds.