A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Froehlich, L.

Paper Title Page
TUPMN018 Dark Current Transport in the FLASH Linac 956
  • L. Froehlich
    DESY, Hamburg
  The free electron laser facility FLASH at DESY Hamburg operates a low-emittance photoinjector and several acceleration modules with superconducting cavities to produce a high quality electron beam of up to 700 MeV. Since few months, the accelerator is routinely operated with its design RF pulse length of 800 μs instead of the prior length of 70-200 μs. As a result, the activation of components due to dark current emitted by the gun has reached critical proportions. To improve the understanding of dark current transport through the linac, simulations have been conducted with the Astra tracking code. The generated phase space distributions are compared against a detailed 3-dimensional aperture model of the machine with the newly developed ApertureLib toolkit. The results are in agreement with direct measurements of the dark current and with the observed activities.  
TUPMS049 Initial Commissioning Experience with the LCLS Injector 1302
  • P. Emma, R. Akre, J. Castro, Y. T. Ding, D. Dowell, J. C. Frisch, A. Gilevich, G. R. Hays, P. Hering, Z. Huang, R. H. Iverson, P. Krejcik, C. Limborg-Deprey, H. Loos, A. Miahnahri, C. H. Rivetta, M. E. Saleski, J. F. Schmerge, D. C. Schultz, J. L. Turner, J. J. Welch, W. E. White, J. Wu
    SLAC, Menlo Park, California
  • L. Froehlich, T. Limberg, E. Prat
    DESY, Hamburg
  Funding: U. S. Department of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor chicane, was installed during the Fall of 2006. Initial system commissioning with an electron beam takes place in the Spring and Summer of 2007. The second phase of construction, including the second bunch compressor and the FEL undulator, will begin later, in the Fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, energy spectrometers, S-band and X-band RF systems, the first bunch compressor stage, and the various beam diagnostics.