A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Friedman, A.

Paper Title Page
TUXAB01 Absolute Measurement of Electron Cloud Density 754
 
  • M. Kireeff Covo, R. H. Cohen, A. Friedman, A. W. Molvik
    LLNL, Livermore, California
  • D. Baca, F. M. Bieniosek, B. G. Logan, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • J. L. Vujic
    UCB, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy, LLNL and LBNL, under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 us duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.*

* M. Kireeff Covo, A. W. Molvik, A. Friedman, J.-L. Vay, P. A. Seidl, G. Logan, D. Baca, and J. L. Vujic, Phys. Rev. Lett. 97, 054801 (2006).

 
slides icon Slides  
TUXAB03 Self-consistent 3D Modeling of Electron Cloud Dynamics and Beam Response 764
 
  • M. A. Furman, C. M. Celata, M. Kireeff Covo, K. G. Sonnad, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • P. Stoltz
    Tech-X, Boulder, Colorado
 
  Funding: Work supported by the U. S. DOE under Contracts DE-AC02-05CH11231 and W-7405-Eng-48, and by the US-LHC Accelerator Research Project (LARP).

We present recent advances in the modeling of beam-electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

 
slides icon Slides  
TUYC01 Studies of the Pulse Line Ion Accelerator 852
 
  • W. L. Waldron, E. Henestroza, L. R. Reginato
    LBNL, Berkeley, California
  • R. J. Briggs
    SAIC, Alamo, California
  • A. Friedman
    LLNL, Livermore, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy under Contracts No. DE-AC02-05CH11231 and W-7405-Eng-48.

The Pulse Line Ion Accelerator concept was motivated by the need for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied to one end of a helical pulse line creates a traveling wave that accelerates and axially confines the heavy ion beam pulse. The concept has been demonstrated with ion beams at modest acceleration gradients. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/m acceleration gradients. This method has the potential to reduce the length of an equivalent induction accelerator by a factor of 6-10 while simplifying the pulsed power systems. The performance of prototype hardware has been limited by high voltage flashover across the vacuum insulator. Bench tests and analysis have led to significantly improved flashover thresholds. Further studies using a variety of experimental configurations are planned.

 
slides icon Slides  
WEPMS016 Modeling the Pulse Line Ion Accelerator (PLIA): An Algorithm for Quasi-Static Field Solution 2364
 
  • A. Friedman, D. P. Grote
    LLNL, Livermore, California
  • R. J. Briggs
    SAIC, Alamo, California
  • E. Henestroza, W. L. Waldron
    LBNL, Berkeley, California
 
  Funding: Work performed under auspices of U. S. DoE by the Univ. of CA, LLNL & LBNL under Contract Nos. W-7405-Eng-48 and DE-AC02-05CH11231

The Pulse-Line Ion Accelerator* (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a "sheath helix" model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

*R. J. Briggs, PRST-AB 9, 060401 (2006).

 
THPAS031 Measurement and Simulation of Source-Generated Halos in the University of Maryland Electron Ring (UMER) 3564
 
  • I. Haber, S. Bernal, R. Feldman, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, D. Stratakis, M. Walter
    UMD, College Park, Maryland
  • A. Friedman, D. P. Grote
    LLNL, Livermore, California
  • J.-L. Vay
    LBNL, Berkeley, California
 
  Funding: This work is supported by the US DOE under contract Nos. DE-FG02-02ER54672 and DE-FG02-94ER40855 (UMD), and DE-AC02-05CH11231 (LBNL) and W-7405-ENG-48 (LLNL)

One of the areas fundamental beam physics that serve as the rationale for recent research on UMER is the study of generation and evolution of beam halos. This physics can be accessed on a scaled basis in UMER at a small fraction of the cost of similar experiments on a much larger machine. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a potentially significant source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam in the vicinity of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo. Both experimental data and simulations will be presented to illustrate the details of this mechanism for halo formation.

 
THPAS050 Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing 3603
 
  • W. M. Sharp, R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • J. E. Coleman, P. K. Roy, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • I. Haber
    UMD, College Park, Maryland
 
  Funding: This work was performed under the auspices of US DOE by the University of California Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts W-7405-Eng-48 and DE-AC03-76SF00098.

Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.