A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fisher, A. S.

Paper Title Page
TUPAS068 A Transverse Beam Instability in the PEP-II HER Induced by Discharges in the Vacuum System 1811
 
  • U. Wienands, W. S. Colocho, S. DeBarger, F.-J. Decker, S. Ecklund, A. S. Fisher, J. D. Fox, A. Kulikov, A. Novokhatski, M. Stanek, M. K. Sullivan, W. Wittmer, D. Wright, G. Yocky
    SLAC, Menlo Park, California
 
  Funding: Work supported by US Dept. of Energy

During Run 5, PEP-II has been plagued by beam instabilities causing beam aborts due to radiation in the BaBar detector or due to fast beam loss triggering the dI/dt interlock. The latest of such instabilities occurred in the High Energy Ring (HER), severely curtailing the maximum beam current achievable during physics running. Techniques used in tracking down this instability included fast monitoring of background radiation, temperatures and vacuum pressure. In this way, the origin of the instability was localized and inspection of the vacuum system revealed several damaged bellows shields. Replacing these units significantly reduced the incident rate but did not eliminate it fully. After the end of the run, a number of damaged rf seals were found, possibly having caused the remaining incidents of instability. In this paper we will outline the steps taken to diagnose and remedy the issue and also compare the different signatures of vacuum-induced instabilities we have seen in both rings of PEP-II during the run.

 
FRPMS065 Bunch Length Measurements in SPEAR3 4159
 
  • W. J. Corbett, A. S. Fisher, X. Huang, J. A. Safranek, J. J. Sebek
    SLAC, Menlo Park, California
  • A. H. Lumpkin
    ANL, Argonne, Illinois
  • W. Y. Mok
    Life Imaging Technology, Palo Alto, California
 
  Funding: Work supported by US Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

In the nominal SPEAR3 storage ring optics, the natural radiation pulse length is 40ps fwhm per bunch. Due to the double-bend achromat lattice configuration, it is relatively straightforward to reduce the momentum compaction factor (α) and hence reduce the bunch length by modest values. In this paper we present streak camera measurements of the bunch length in the nominal optics, and with ~α/20 and α/50 optics as a function of single-bunch current. The results demonstrate <10ps fwhm radiation pulses with up 5x108 particles/bunch (~100μ amp). Radiation pulse power, bunch length scaling and broadband impedance estimates are discussed.

 
FRPMS066 Commissioning the Fast Luminosity Dither for PEP-II 4165
 
  • A. S. Fisher, S. Ecklund, R. C. Field, S. M. Gierman, P. Grossberg, K. E. Krauter, E. S. Miller, M. Petree, N. Spencer, M. K. Sullivan, K. K. Underwood, U. Wienands
    SLAC, Menlo Park, California
  • K. G. Sonnad
    LBNL, Berkeley, California
 
  Funding: Supported by US DOE under contract DE-AC03-76SF00515.

To maximize luminosity, a feedback system adjusts the relative transverse (x,y) position and vertical angle (y') of the electron and positron beams at the interaction point (IP) of PEP-II. The original system sequentially moved ("dithered") the electrons in four steps per coordinate. Communication with DC corrector magnets and field penetration through copper vacuum chambers led to a full-cycle time of 10 s. Machine tuning can move the beams at the IP and so had to be slowed to wait for the feedback. A new system installed in 2006 simultaneously applies a small sinusoidal dither to all three coordinates at 73, 87 and 103 Hz. Air-core coils around stainless-steel chambers give rapid field penetration. A lock-in amplifier at each frequency detects the magnitude and phase of the luminosity's response. Then corrections for all coordinates are determined using Newton's method, based on convergence from prior steps, and are applied by the same DC correctors used previously but with only one adjustment per cycle for an expected ten-fold increase in speed. We report on the commissioning of this system and on its performance in maintaining peak luminosity and aiding machine tuning.

 
FRPMS084 Detection of Instumental Drifts in the PEP II LER BPM System 4261
 
  • W. Wittmer, A. S. Fisher, D. J. Martin, J. J. Sebek
    SLAC, Menlo Park, California
 
  Funding: US-DOE

During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. Sudden artificial jumps of the orbit, which were regularly observed by a large number of BPMs during routine operation, were interfering with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided by SPEAR III at SSRL) was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before the end of PEP II an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.