A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Feher, SF.

Paper Title Page
MOPAS023 Nb3Sn Accelerator Magnet Technology R&D at Fermilab 482
 
  • A. V. Zlobin, G. Ambrosio, N. Andreev, E. Barzi, R. Bossert, R. H. Carcagno, G. Chlachidze, J. DiMarco, SF. Feher, V. Kashikhin, V. S. Kashikhin, M. J. Lamm, A. Nobrega, I. Novitski, D. F. Orris, Y. M. Pischalnikov, P. Schlabach, C. Sylvester, M. Tartaglia, J. C. Tompkins, D. Turrioni, G. Velev, R. Yamada
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the U. S. Department of Energy

Accelerator magnets based on Nb3Sn superconductor advances magnet operation fields above 10T and increases the coil temperature margin. Development of a new accelerator magnet technology includes the demonstration of main magnet parameters (maximum field, quench performance, field quality, etc.) and their reproducibility using short models, and then the demonstration of technology scale up using long coils. Fermilab is working on the development of Nb3Sn accelerator magnets using shell-type dipole coils and react-and-wind method. As a part of the first phase of technology development Fermilab built and tested six 1-m long dipole models and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. Reproducibility of magnet field quality was demonstrated by all six short models. The technology scale up phase has started by building 2m and 4m dipole coils and testing them in a mirror configuration. This effort complements the Nb3Sn scale up work being performed in the framework of US LHC Accelerator Research Program (LARP). The status and main results of the Nb3Sn accelerator magnet development at Fermilab are reported.

 
FROAC03 The Commissioning of the LHC Technical Systems 3801
 
  • R. I. Saban, R. Alemany-Fernandez, V. Baggiolini, A. Ballarino, E. Barbero-Soto, B. Bellesia, F. Bordry, D. Bozzini, M. P. Casas Lino, V. Chareyre, S. D. Claudet, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, M. Gruwe, V. Kain, G. Kirby, M. Koratzinos, R. J. Lauckner, S. L.N. Le Naour, K. H. Mess, F. Millet, V. Montabonnet, D. Nisbet, B. Perea-Solano, M. Pojer, R. Principe, S. Redaelli, A. Rijllart, F. Rodriguez-Mateos, R. Schmidt, L. Serio, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, W. Venturini Delsolaro, A. Vergara-Fernandez, A. P. Verweij, M. Zerlauth
    CERN, Geneva
  • SF. Feher, R. H. Flora, R. Rabehl
    Fermilab, Batavia, Illinois
 
  The LHC is an accelerator with unprecedented complexity; in addition, the energy stored in magnets and the beams exceeds other accelerators by one to two orders of magnitude. To avoid a plague of technical problems and ensure a safe machine start-up, the hardware commissioning phase was emphasized: the thorough commissioning of technical systems (vacuum, cryogenics, quench protection, power converters, electrical circuits, AC distribution, ventilation, demineralised water, injection system, beam dumping system, beam instrumentation, etc) is carried-out without beam. Activity started in June 2005 with the commissioning of individual systems, followed by operating a full sector of the machine as a whole. LHC architecture allows the commissioning of each of the eight sectors independently from the others, before the installation of other sectors is complete. Important effort went into the definition of the programme and the organization of the coordination in the field, as well as in the tools to record and analyze test results. This paper presents the experience with this approach, results from the commissioning of the first LHC sectors and gives an outlook for future activities.  
slides icon Slides