A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fawley, W. M.

Paper Title Page
TUPMN109 A High Repetition Rate VUV-Soft X-Ray FEL Concept 1167
 
  • J. N. Corlett, J. M. Byrd, W. M. Fawley, M. Gullans, D. Li, S. M. Lidia, H. A. Padmore, G. Penn, I. V. Pogorelov, J. Qiang, D. Robin, F. Sannibale, J. W. Staples, C. Steier, M. Venturini, S. P. Virostek, W. Wan, R. P. Wells, R. B. Wilcox, J. S. Wurtele, A. Zholents
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, High Energy Physics, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, and wavelength; utilization of harmonics to attain shorter wavelengths; and precise synchronization of the x-ray pulse with laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FELs, each producing high average brightness, tunable over the soft x-ray-VUV range, and each with individual performance characteristics determined by the configuration of the FEL SASE, enhanced-SASE (ESASE), seeded, self-seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands. FELs would be tailored to specific experimental needs, including production of ultrafast pulses even into the attosecond domain, and high temporal coherence (i.e. high resolving power) beams.

 
WEPMS024 Upgrades to the DAHRT Second Axix Induction Cells 2385
 
  • K. Nielsen, J. Barraza, M. Kang
    LANL, Los Alamos, New Mexico
  • F. M. Bieniosek, K. Chow, W. M. Fawley, E. Henestroza, L. R. Reginato, W. L. Waldron
    LBNL, Berkeley, California
  • R. J. Briggs, B. A. Prichard
    SAIC, Los Alamos, New Mexico
  • T. E. Genoni, T. P. Hughes
    Voss Scientific, Albuquerque, New Mexico
 
  The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two perpendicular electron Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. The second axis, DARHT II, features a 3-MeV injector and a 15-MeV, 2-kA, 1.6-microsecond accelerator consisting of 74 induction cells and drivers. Major induction cell components include high flux swing magnetic material (Metglas 2605SC) and a MycalexTM insulator. The cell drivers are pulse forming networks (PFNs). The DARHT II accelerator cells have undergone a series of test and modeling efforts to fully understand their operational parameters. Physical changes in the cell oil region, the cell vacuum region, and the cell drivers, together with different operational and maintenance procedures, have been implemented in the prototype. A series of prototype acceptance tests have demonstrated that the required cell lifetime is met at the increased performance levels. Shortcomings of the original design are summarized and improvements to the design, their resultant enhancement in performance, and various test results are discussed.