A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Erickson, J. L.

Paper Title Page
TUPAS062 The LANSCE Refurbishment (LANSCE-R) Project 1796
 
  • K. W. Jones, J. L. Erickson, F. R. Gallegos
    LANL, Los Alamos, New Mexico
 
  Funding: Work performed under the auspices of the U. S. Department of Energy

At the core of the Los Alamos Neutron Science Center (LANSCE) accelerator lies an 800-MeV proton linac that drives user facilities for isotope production, proton radiography, ultra-cold neutrons, weapons neutron research and for various sciences using neutron scattering. LANSCE is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The general goals for LANSCE-R are to (1) preserve dependable operation of the linac and (2) increase the cost effectiveness of operations. Requirements can be met for overall beam intensity, availability, and reliability with long-term sustainability and minimal disruption to scheduled user programs. The baseline refurbishment project consists of replacing the 201 MHz RF systems, upgrading a substantial fraction of the 805 MHz RF systems, updating the control system, and replacing or improving a variety of diagnostics and accelerator subsystems. The plans for the various LANSCE-R improvements will be presented and the preliminary cost and schedule estimates will be discussed.

 
FRPMS051 Proposed Beam Diagnostics Instrumentation for the LANSCE Refurbishment Project 4099
 
  • J. D. Gilpatrick, B. Blind, M. J. Borden, J. L. Erickson, M. S. Gulley, S. S. Kurennoy, R. C. McCrady, J. F. O'Hara, M. A. Oothoudt, C. Pillai, J. F. Power, L. Rybarcyk, F. E. Shelley
    LANL, Los Alamos, New Mexico
 
  Funding: *Work supported by the U. S. Department of Energy.

Presently, the Los Alamos National Laboratory is in the process of planning a refurbishment of various sub-systems within its Los Alamos Neutron Science Center accelerator facility. A part of this LANSCE facility refurbishment will include some replacement of and improvement to existing older beam diagnostics instrumentation. While plans are still being discussed, some instrumentation that is under improvement or replacement consideration are beam phase and position measurements within the 805-MHz side-coupled cavity linac, slower wire profile measurements, typically known as wire scanners, and possibly additional installation of fast ionization-chamber loss monitors. This paper will briefly describe the requirements for these beam measurements, what we have done thus far to answer these requirements, and some of the technical issues related to the implementation of these instrumentation.

 
FRPMS055 LANSCE Prototype Beam Position and Phase Monitor (BPPM) Mechanical Design 4123
 
  • J. F. O'Hara, M. J. Borden, D. C. Bruhn, J. L. Erickson, J. D. Gilpatrick, S. S. Kurennoy
    LANL, Los Alamos, New Mexico
 
  Funding: Work supported by United States Department of Energy

A prototype Beam Position and Phase Monitor (BPPM) beam line device is being designed to go in the LANSCE 805-MHz linac. The concept is to install two beam line devices in locations where their measurements can be compared with older existing Delta-T loop and wire scanner measurements. The plan is to install two devices so that transverse position, angular trajectory, as well as central beam phase and energy will be measured. The mechanical design will combine features from previous LANL designs that were done for the LANSCE Isotope Production Facility, LANSCE Switchyard project, and those done for the SNS linac. This paper will discuss the mechanical design and fabrication issues encountered during the course of developing the BPPM.