A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Emery, L.

Paper Title Page
TUPMN090 Evaluation of the Possibility of Using Damping Wigglers in the Advanced Photon Source 1124
 
  • M. Borland, L. Emery
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) is a 7-GeV storage ring light source that has been in operation for over a decade. Over time, the performance of the APS has been increased by reduction of the emittance from 8 nm to 3.1 nm and by the use of top-up mode. We continue to explore options for improving the performance further. This paper discusses the possible improvements in emittance that could result from the use of damping wigglers. We also discuss rf and space requirements.

 
TUPMN091 Planned Use of Pulsed Crab Cavities for Short X-ray Pulse Generation at the Advanced Photon Source 1127
 
  • M. Borland, J. Carwardine, Y.-C. Chae, P. K. Den Hartog, L. Emery, K. C. Harkay, A. H. Lumpkin, A. Nassiri, V. Sajaev, N. Sereno, G. J. Waldschmidt, B. X. Yang
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years, we have explored application to the Advanced Photon Source (APS) of Zholents'* crab-cavity-based scheme for production of short x-ray pulses. Work concentrated on using superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made for a pulsed system** using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instability issues, and diagnostics plans.

*A. Zholents et al., NIM A 425, 385 (1999).**P. Anfinrud, private communication.

 
THPAN089 Beam Dynamics, Performance, and Tolerances for Pulsed Crab Cavities at the Advanced Photon Source for Short X-ray Pulse Generation 3429
 
  • M. Borland, L. Emery, V. Sajaev
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) has decided to implement a system using pulsed* crab cavities to produce short x-ray pulses using Zholents'** scheme. This paper describes beam dynamics issues related to implementation of this scheme in a single APS straight section. Modeling of the cavity is used to demonstrate that the deflection will be independent of transverse position in the cavity. Parameters and performance for a standard and lengthened APS straight section are shown. Finally, tolerances are discussed and obtained from tracking simulations.

* M. Borland et al., these proceedings.** A. Zholents et al., NIM A 425, 385 (1999).

 
THPAN097 International Linear Collider Damping Ring Lattice Design 3450
 
  • A. Xiao, L. Emery
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

We present a lattice design based on the theoretical-minimum-emittance (TME) cell for the International Linear Collider (ILC0 6.6-km 5-GeV damping ring. Several areas are discussed: momentum compaction, lattice layout, injection and extraction, circumference adjusters, phase adjuster, and dynamic aperture calculation with multipole errors.

 
THPAN099 Direct Space-Charge Calculation in Elegant and Its Application to the ILC Damping Ring 3456
 
  • A. Xiao, M. Borland, L. Emery, Y. Wang
    ANL, Argonne, Illinois
  • K. Y. Ng
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

A direct space-charge force model has been implemented in the tracking code elegant. The user can simulate transverse space-charge effects by inserting space-charge elements in the beamline at any desired position. Application to the International Linear Collider damping ring is presented in this paper. We simulated beam under equilibrium conditions, as well as the entire damping cycle from injection to extraction. Results show that beam halo is generated due to space charge effects. This would be a significant concern for the ILC damping ring and a detailed follow-up study is needed.

 
FRPMN108 Coupled-Bunch Instability Study of Multi-cell Deflecting Mode Cavities for the Advanced Photon Source 4348
 
  • L. Emery
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The short-pulse X-ray project at the Advanced Photon Source (APS) uses three room-temperature nine-cell 2.815 GHz deflecting-mode cavities in a straight section. Undamped, these cavities' higher-order and lower-order resonator modes will cause multi-bunch instabilities in longitudinal and transverse planes for any bunch pattern of a 1'000mA store. Damping of these modes must be part of the design of the cavities. We report calculations of instability growth rates and tracking simulations that were essential in specifying the rf design of the damping structures. We used various operating bunch patterns and scanned levels of damping of the cavities. Because one of the operating bunch patterns is not symmetric, we used a normal mode analysis * implemented in the APS code clinchor. Our calculation included random sampling of resonator frequencies in a reasonable range. We found that staggering of frequencies is only effective for modes that could not be heavily damped.

* K. Thompson and R. Ruth, PAC 1989

 
FRPMN109 200-mA Studies in the APS Storage Ring 4354
 
  • K. C. Harkay, Y.-C. Chae, L. Emery, L. H. Morrison, A. Nassiri, G. J. Waldschmidt
    ANL, Argonne, Illinois
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source storage ring is normally operated with 100 mA of beam current. A number of high-current studies were carried out to determine the multibunch instability limits. The longitudinal multibunch instability is dominated by the rf cavity higher-order modes (HOMs), and the coupled-bunch instability (CBI) threshold is bunch-pattern dependent. We can stably store 200 mA with 324 bunches, and the CBI threshold is 245 mA. With 24 bunches, several components are approaching temperature limits above 160 mA, including the HOM dampers. We do not see any CBI at this current. The transverse multibunch instabilities are most likely driven by the resistive wall impedance; there is little evidence that the dipole HOMs contribute. Presently, we rely on the chromaticity to stabilize the transverse multibunch instabilities. When we stored beam up to 245 mA, we used high chromaticity, and the beam was transversely stable. The stabilizing chromaticity was studied as a function of current. We can use these experimental results to predict multibunch instability thresholds for various upgrade options, such as smaller-gap or longer ID chambers and the associated increased impedance.