A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Eliasson, P.

Paper Title Page
THPMN062 Dynamic Effects During Beam-Based Alignment 2847
 
  • D. Schulte, P. Eliasson, A. Latina
    CERN, Geneva
 
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

Complex beam-based alignment procedures are needed in future linear colliders to reduce the negative effects of static imperfections in the main linac on the beam emittance. The efficiency of these procedures could be affected by dynamic imperfections during their application. In this paper we study the resulting emittance growth.

 
THPMN061 Bunch Compressor for Beam-Based Alignment 2844
 
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Eliasson
    Uppsala University, Uppsala
 
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

Misalignments in the main linac of future linear colliders can lead to significant emittance growth. Beam-based alignment algorithms, such as Dispersion Free Steering (DFS), are necessary to mitigate these effects. We study how to use the Bunch Compressor to create the off-energy beams necessary for DFS and discuss the effectiveness of this method.

 
THPMS013 Comparison of Tracking Codes for the International Linear Collider 3020
 
  • J. C. Smith
    CLASSE, Ithaca
  • P. Eliasson
    Uppsala University, Uppsala
  • K. Kubo
    KEK, Ibaraki
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Lebrun, K. Ranjan
    Fermilab, Batavia, Illinois
  • F. Poirier, N. J. Walker
    DESY, Hamburg
  • P. Tenenbaum
    SLAC, Menlo Park, California
 
  Funding: Supported by the US Department of Energy, the US National Science Foundation and the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area".

In an effort to compare beam dynamics and create a ‘‘benchmark'' for Dispersion Free Steering (DFS) a comparison was made between different International Linear Collider (ILC) simulation programs while performing DFS. This study consisted of three parts. First, a simple betatron oscillation was tracked through each code. Secondly, a set of component misalignments and corrector settings generated from one program was read into the other to confirm similar emittance dilution. Thirdly, given the same set of component misalignments DFS was performed independently in each program and the resulting emittance dilution was compared. Performance was found to agree exceptionally well in all three studies.