A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ecklund, S.

Paper Title Page
TUPAS068 A Transverse Beam Instability in the PEP-II HER Induced by Discharges in the Vacuum System 1811
 
  • U. Wienands, W. S. Colocho, S. DeBarger, F.-J. Decker, S. Ecklund, A. S. Fisher, J. D. Fox, A. Kulikov, A. Novokhatski, M. Stanek, M. K. Sullivan, W. Wittmer, D. Wright, G. Yocky
    SLAC, Menlo Park, California
 
  Funding: Work supported by US Dept. of Energy

During Run 5, PEP-II has been plagued by beam instabilities causing beam aborts due to radiation in the BaBar detector or due to fast beam loss triggering the dI/dt interlock. The latest of such instabilities occurred in the High Energy Ring (HER), severely curtailing the maximum beam current achievable during physics running. Techniques used in tracking down this instability included fast monitoring of background radiation, temperatures and vacuum pressure. In this way, the origin of the instability was localized and inspection of the vacuum system revealed several damaged bellows shields. Replacing these units significantly reduced the incident rate but did not eliminate it fully. After the end of the run, a number of damaged rf seals were found, possibly having caused the remaining incidents of instability. In this paper we will outline the steps taken to diagnose and remedy the issue and also compare the different signatures of vacuum-induced instabilities we have seen in both rings of PEP-II during the run.

 
FRPMS066 Commissioning the Fast Luminosity Dither for PEP-II 4165
 
  • A. S. Fisher, S. Ecklund, R. C. Field, S. M. Gierman, P. Grossberg, K. E. Krauter, E. S. Miller, M. Petree, N. Spencer, M. K. Sullivan, K. K. Underwood, U. Wienands
    SLAC, Menlo Park, California
  • K. G. Sonnad
    LBNL, Berkeley, California
 
  Funding: Supported by US DOE under contract DE-AC03-76SF00515.

To maximize luminosity, a feedback system adjusts the relative transverse (x,y) position and vertical angle (y') of the electron and positron beams at the interaction point (IP) of PEP-II. The original system sequentially moved ("dithered") the electrons in four steps per coordinate. Communication with DC corrector magnets and field penetration through copper vacuum chambers led to a full-cycle time of 10 s. Machine tuning can move the beams at the IP and so had to be slowed to wait for the feedback. A new system installed in 2006 simultaneously applies a small sinusoidal dither to all three coordinates at 73, 87 and 103 Hz. Air-core coils around stainless-steel chambers give rapid field penetration. A lock-in amplifier at each frequency detects the magnitude and phase of the luminosity's response. Then corrections for all coordinates are determined using Newton's method, based on convergence from prior steps, and are applied by the same DC correctors used previously but with only one adjustment per cycle for an expected ten-fold increase in speed. We report on the commissioning of this system and on its performance in maintaining peak luminosity and aiding machine tuning.

 
FRPMS076 A New Q2-Bellows Absorber for the PEP-II SLAC B-Factory 4219
 
  • A. Novokhatski, S. DeBarger, S. Ecklund, N. Kurita, J. Seeman, M. K. Sullivan, S. P. Weathersby, U. Wienands
    SLAC, Menlo Park, California
 
  Funding: Work supported by US DOE contract DE-AC02-76SF00515

A new Q2-bellows absorber will damp only transverse wake fields and will not produce additional beam losses due to Cherenkov radiation. The design is based on the results of the HOM analysis. Geometry of the slots and absorbing tiles was optimized to get maximum absorbing effect.