A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dolgashev, V. A.

Paper Title Page
TUPMN091 Planned Use of Pulsed Crab Cavities for Short X-ray Pulse Generation at the Advanced Photon Source 1127
 
  • M. Borland, J. Carwardine, Y.-C. Chae, P. K. Den Hartog, L. Emery, K. C. Harkay, A. H. Lumpkin, A. Nassiri, V. Sajaev, N. Sereno, G. J. Waldschmidt, B. X. Yang
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years, we have explored application to the Advanced Photon Source (APS) of Zholents'* crab-cavity-based scheme for production of short x-ray pulses. Work concentrated on using superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made for a pulsed system** using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instability issues, and diagnostics plans.

*A. Zholents et al., NIM A 425, 385 (1999).**P. Anfinrud, private communication.

 
WEPMS018 Superconducting Materials Testing with a High-Q Copper RF Cavity 2370
 
  • A. Canabal, T. Tajima
    LANL, Los Alamos, New Mexico
  • G. B. Bowden, V. A. Dolgashev, J. R. Lewandowski, C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
  • I. E. Campisi
    ORNL, Oak Ridge, Tennessee
 
  Magnesium diboride (MgB2) has a transition temperature (Tc) of ~40 K, i.e., about 4 times higher than niobium (Nb) that has been used for recent accelerators. The studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb and much less power dependence compared to high-Tc materials such as YBCO up to ~400 Oe. The tests to check the RF critical magnetic field, an important parameter to determine the feasibility for accelerator application, are underway. We are planning to test different thickness films and with different coating methods. This paper describes the results obtained so far. One of the objectives is to verify Gurevich's theory of getting higher critical field than Nb by adding a very thin layer (less than penetration depth) to Nb. In addition, some CW tests on power dependence up to higher magnetic fields are planned and some results will be shown if available at the time of conference.  
WEPMS038 RF Design of Normal Conducting Deflecting Structures for the Advanced Photon Source 2427
 
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • M. Borland, G. J. Waldschmidt
    ANL, Argonne, Illinois
 
  Use of normal conducting deflecting structures for production of short x-ray pulses is now being implemented at the Advanced Photon Source (APS). The structures have to produce up to 6 MV maximum deflection per structure at a 1kHz repetition rate. At the same time, the nominal beam quality must be maintained throughout the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structure with heavy wakefield damping. In this paper, we discuss the design considerations and present our current results.  
WEPMS039 High Power Tests of Normal Conducting Single-Cell Structures 2430
 
  • V. A. Dolgashev, C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
  • Y. Higashi, T. Higo
    KEK, Ibaraki
 
  Funding: This work was supported by the U. S. Department of Energy contract DE-AC02-76SF00515.

We report results of the first high power tests of single-cell traveling-wave and standing-wave accelerating structures. These tests are part of an experimental and theoretical study of RF breakdown in normal conducting structures at 11.4 GHz*. The goal of this study is to determine the gradient potential of normal conducting, RF powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures powered by SLAC?s XL-4 klystron. This setup was created for economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the klystron test laboratory at SLAC.

* V. A. Dolgashev et al., "RF Breakdown In Normal Conducting Single-Cell Structures," SLAC-PUB-11707, Particle Accelerator Conference (PAC 05), Knoxville, Tennessee, 16-20 May 2005, pp. 595- 599.

 
THPMN085 Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility 2904
 
  • S. P. Antipov, M. E. Conde, W. Gai, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
  Funding: US Department of Energy

A study of breakdown mechanism has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

 
THPMS075 High Power Testing of a Fused Quartz-based Dielectric-loaded Accelerating Structure 3157
 
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • V. A. Dolgashev, S. G. Tantawi
    SLAC, Menlo Park, California
  • W. Gai, R. Konecny, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • S. H. Gold
    NRL, Washington, DC
  • A. K. Kinkead
    LET
 
  We report on the most recent results from a series of high power tests being carried out on RF-driven dielectric-loaded accelerating (DLA) structures. The purpose of these tests is to determine the viability of the DLA as a traveling-wave accelerator and is a collaborative effort between Argonne National Laboratory (ANL), Naval Research Laboratory (NRL), and Stanford Linear Accelerator Center (SLAC). In this paper, we report on the recent high power tests of a fused quartz-based DLA structure that was carried out at incident powers of up to 12 MW at NRL and 37 MW at SLAC. We report experimental details of the RF conditioning process and make comparison of our multipactor model to the experiment, including tests of geometrical scaling laws and the time evolution of multipactor. Finally, we discuss future plans for the program including a planned test of new quartz-based DLA with a different geometry to both reach higher accelerating gradients and to continue the parametric study of multipactor.  
FRPMN105 The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation 4339
 
  • Y.-C. Chae, G. J. Waldschmidt
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years we have explored the application to the Advanced Photon Source (APS) of Zholents' crab-cavity-based scheme for production of short x-ray pulses. As a near-term project, the APS has elected to pursue a pulsed system using room-temperature cavities*. The cavity design has been optimized to heavily damp parasitic modes while maintaining large shunt impedance for the deflecting dipole mode**. We evaluated a system consisting of three crab cavities as an impedance source and determined their effect on the single- and multi-bunch instabilities. In the single-bunch instability we used the APS impedance model as the reference system in order to predict the overall performance of the ring when the crab cavities are installed in the future. For multi-bunch instabilities we used a realistic fill pattern, including hybrid-fill, and tracked multiple bunches where each bunch was treated as soft in distribution. To verify the electrical design, the realistic wake potential of the 3D structure was calculated using GdfidL and this wake potential was used in the multi-bunch simulations.

* M. Borland et al., "Planned Use of Pulsed Crab Cavities at the APS for Short X-ray Pulse Generation," these proceedings.** V. Dolgashev et al., "RF Design of Normal Conducting Deflecting Structures for the APS," these proceedings.