A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Derbenev, Y. S.

Paper Title Page
TUOBKI02 Low Emittance Muon Colliders 706
 
  • R. P. Johnson
    Muons, Inc, Batavia
  • Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Funding: The work described here was supported in part by DOE SBIR/STTR grants DE-FG02-03ER83722, 04ER86191, 04ER84016, 05ER86252, 05ER86253 and 06ER86282.

Advances in ionization cooling, phase space manipulations, and technologies to achieve high brightness muon beams are stimulating designs of high-luminosity energy-frontier muon colliders. Simulations of Helical Cooling Channels (HCC) show impressive emittance reductions, new ideas on reverse emittance exchange and muon bunch coalescing are being developed, and high-field superconductors show great promise to improve the effectiveness of ionization cooling. Experiments to study RF cavities pressurized with hydrogen gas in strong magnetic fields have had encouraging results. A 6-dimensional HCC demonstration experiment is being designed and a 1.5 TeV muon collider is being studied at Fermilab. Two new synergies are that very cool muon beams can be accelerated in ILC RF structures and that this capability can be used both for muon colliders and for neutrino factories. These advances are discussed in the context of muon colliders with small transverse emittances and with fewer muons to ease requirements on site boundary radiation, detector backgrounds, and muon production.

 
slides icon Slides  
WEOCKI02 Design of High Luminosity Ring-Ring Electron-Light Ion Collider at CEBAF 1935
 
  • Y. Zhang, S. A. Bogacz, P. B. Brindza, A. Bruell, L. S. Cardman, J. R. Delayen, Y. S. Derbenev, R. Ent, P. Evtushenko, J. M. Grames, A. Hutton, G. A. Krafft, R. Li, L. Merminga, J. Musson, M. Poelker, A. W. Thomas, B. Wojtsekhowski, B. C. Yunn
    Jefferson Lab, Newport News, Virginia
  • V. P. Derenchuk
    IUCF, Bloomington, Indiana
  • V. G. Dudnikov
    BTG, New York
  • W. Fischer, C. Montag
    BNL, Upton, Long Island, New York
  • P. N. Ostroumov
    ANL, Argonne, Illinois
 
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Experiments on the study of fundamental quark-gluon structure of nucleons require an electron-light ion collider of a center of mass energy from 20 to 65 GeV at luminosity level of 1035 cm-2s-1 with both beams polarized. A CEBAF accelerator based ring-ring collider of 7 GeV electrons/positrons and 150 GeV light ions is envisioned as a possible next step after the 12 GeV CEBAF Upgrade. The developed ring-ring scheme takes advantage of the existing polarized continuous electron beam and SRF linac, the green-field design of the collider rings and the ion accelerator complex with electron cooling. We report results of our design studies of the ring-ring version of an electron-light ion collider of the required luminosity.

 
slides icon Slides  
THPMN094 Simulations of Parametric-resonance Ionization Cooling 2927
 
  • D. J. Newsham, R. P. Johnson, R. Sah
    Muons, Inc, Batavia
  • S. A. Bogacz, Y.-C. Chao, Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Funding: Supported in part by DOE SBIR grant DE-FG02-04ER84016

Parametric-resonance ionization cooling (PIC) is a muon-cooling technique that is useful for low-emittance muon colliders. This method requires a well-tuned focusing channel that is free of chromatic and spherical aberrations. In order to be of practical use in a muon collider, it also necessary that the focusing channel be as short as possible to minimize muon loss due to decay. G4Beamline numerical simulations are presented of a compact PIC focusing channel in which spherical aberrations are minimized by using design symmetry.

 
THPMN095 Muon Bunch Coalescing 2930
 
  • R. P. Johnson
    Muons, Inc, Batavia
  • C. M. Ankenbrandt, C. M. Bhat, M. Popovic
    Fermilab, Batavia, Illinois
  • S. A. Bogacz, Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Funding: Supported in part by DOE STTR grants DE-FG02-04ER86191 and -05ER86253.

The idea of coalescing multiple muon bunches at high energy to enhance the luminosity of a muon collider provides many advantages. It circumvents space-charge, beam loading, and wakefield problems of intense low-energy bunches while restoring the synergy between muon colliders and neutrino factories based on muon storage rings. A sampling of initial conceptual design work for a coalescing ring is presented here.

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides