A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Della Penna, A.

Paper Title Page
TUOCC02 Progress in Tune, Coupling, and Chromaticity Measurement and Feedback during RHIC Run 7 886
 
  • P. Cameron, J. Cupolo, W. C. Dawson, C. Degen, A. Della Penna, L. T. Hoff, Y. Luo, A. Marusic, R. Schroeder, C. Schultheiss, S. Tepikian
    BNL, Upton, Long Island, New York
  • M. Gasior
    CERN, Geneva
 
  Funding: US DOE

Tune feedback was first implemented in RHIC in 2002 as a specialist activity. The transition to full operational status was impeded by dynamic range problems, as well as by overall loop instabilities driven by large coupling. The dynamic range problem was solved by the CERN development of the Direct Diode Detection Analog Front End. Continuous measurement of all projections of the betatron Eigenmodes made possible the world's first implementation of coupling feedback during beam acceleration, resolving the problem of overall loop instabilites. Simultaneous tune and coupling feedbacks were utilized as specialist activities for ramp development during the 2006 RHIC run. At the beginning of the 2007 RHIC run there remained two obstacles to making these feedbacks fully operational in RHIC - chromaticity measurement and control, and the presence of strong harmonics of the power line frequency in the betatron spectrum. We report here on progress in tune, coupling, and chromaticity measurement and feedback, and discuss the relevance of our results to the LHC commissioning effort. The results of investigations of power line harmonics in RHIC are presented elsewhere in these proceedings.

 
slides icon Slides  
TUPAS098 RHIC Beam-Based Sextupole Polarity Verification 1868
 
  • Y. Luo, P. Cameron, A. Della Penna, T. Satogata, D. Trbojevic
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH10886.

A beam-based method was proposed and applied to check the polarities of the arc sextupoles in the Relativistic Heavy Ion Collider (RHIC) with repetitive local horizontal bumps. Wrong sextupole polarities can be easily identified from mismatched signs and amplitudes of the horizontal and vertical tune shifts from bump to bump and/or from arc to arc. This check takes less than 2 hours for both RHIC Blue and Yellow rings. Tune shifts in both planes during this study were tracked with a high-resolution baseband tunemeter (BBQ) system. This method was successfully used to the sextupole polarity check in the RHIC run06.