A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Decker, G.

Paper Title Page
TUPMN089 Configuration, Optics, and Performance of a 7-GeV Energy Recovery Linac Upgrade for the Advanced Photon Source 1121
 
  • M. Borland, G. Decker, A. Nassiri, M. White
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) is a 7-GeV storage ring light source that has been in operation for over a decade. In order to make revolutionary improvements in the performance of the existing APS ring, we are exploring the addition of a 7-GeV energy recovery linac (ERL) to the APS complex. In this paper, we show the possible configuration of such a system, taking into account details of the APS site and the requirement that stored beam capability be preserved. We exhibit a possible configuration for the single-pass, 7-GeV linac. We discuss optical solutions for transport from 10 MeV to 7 GeV and back, including a large turn-around arc that would support 48 additional user beamlines. Tracking results are shown that include incoherent and coherent synchrotron radiation, resulting in predictions of the beamline performance.

 
FRPMN106 Progress toward a Hard X-ray Insertion Device Beam Position Monitor at the Advanced Photon Source 4342
 
  • G. Decker, P. K. Den Hartog, O. Singh
    ANL, Argonne, Illinois
  • G. Rosenbaum
    UGA, Athens, Georgia
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap-dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard x-rays (> several keV) using copper x-ray fluorescence has been initiated. Initial results and future plans are presented.

 
FRPMN116 Status of the RF BPM Upgrade at the Advanced Photon Source 4390
 
  • A. Pietryla, H. Bui, G. Decker, R. Laird, R. M. Lill, W. E. Norum
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS), a third-generation synchrotron light source, has been in operation for twelve years. The monopulse radio frequency (rf) beam position monitor (BPM) is one of three BPM types now employed in the storage ring at the APS. It is a broadband (10 MHz) system designed to measure single-turn and multi-turn beam positions, but it suffers from an aging data acquisition system. The replacement BPM system retains the existing monopulse receivers and replaces the data acquisition system with high-speed analog-to-digital converters (ADCs) and a field-programmable gate array (FPGA) that performs the signal processing. A first article system has been constructed and is currently being evaluated. This paper presents the results of testing of the first article system as well as the progress made in other areas of this upgrade effort.