A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Carli, C.

Paper Title Page
TUODKI02 Optics Considerations for the PS2 739
 
  • M. Benedikt, W. Bartmann, C. Carli, B. Goddard, S. Hancock, J. M. Jowett, Y. Papaphilippou
    CERN, Geneva
 
  CERN envisages replacing the existing Proton Synchrotron (PS) with a larger synchrotron (PS2) capable of injecting at higher energy into the SPS. Since it should increase the performance not only of the LHC but also CNGS and other users of beams from CERN's hadron injector complex, the new accelerator must retain much of the flexibility of the present complex. A number of candidate optics, with and without transition crossing, have been evaluated systematically and compared.  
slides icon Slides  
TUPAN093 Simulation of the CERN PS Booster Performance with 160 MeV H- Injection from Linac4 1595
 
  • F. Gerigk, M. Aiba, C. Carli, M. Martini
    CERN, Geneva
  • S. M. Cousineau
    ORNL, Oak Ridge, Tennessee
 
  The ultimate luminosity (2.3 x 1034 cm-2 s-1) in the LHC can only be reached or even exceeded if a major upgrade of the CERN proton injector complex takes place. The first identified bottleneck towards higher brightness beams is the 50 MeV proton injection of Linac2 into the PS booster (PSB). Doubling the intensity in the PSB can be achieved with a new linac (Linac4) which increases the injection energy to 160 MeV. Linac4 will provide H- ions and charge-exchange injection will be used in the PSB instead of using the present multi-turn proton injection scheme. The code ACCSIM is used to study the H- injection process and to determine if the requested intensities can be reached within the specified emittance budgets. The results are then compared with ORBIT simulations. In the longitudinal plane we use ESME to study various capture schemes.