A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bruhwiler, D. L.

Paper Title Page
WEYKI02 Experimental Demonstration of 1 GeV Energy Gain in a Laser Wakefield Accelerator 1911
 
  • A. J. Gonsalves, S. M. Hooker
    OXFORDphysics, Oxford, Oxon
  • D. L. Bruhwiler, J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Cormier-Michel
    University of Nevada, Reno, Reno, Nevada
  • E. Esarey, C. G.R. Geddes, W. Leemans, K. Nakamura, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
 
  GeV-class electron accelerators have a broad range of uses, including synchrotron facilities, free electron lasers, and high-energy particle physics. The accelerating gradient achievable with conventional radio frequency (RF) accelerators is limited by electrical breakdown within the accelerating cavity to a few tens of MeV, so the production of energetic beams requires large, expensive accelerators. One promising technology to reduce the cost and size of these accelerators (and to push the energy frontier for high-energy physics) is the laser-wakefield accelerator (LWFA), since these devices can sustain electric fields of hundreds of GV/m. In this talk, results will be presented on the first demonstration of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-40TW were guided in a 3.3 cm long gas-filled capillary discharge waveguide, allowing the production of high-quality electron beams with energy up to 1 GeV. The electron beam characteristics and laser guiding, and their dependence on laser and plasma parameters will be discussed and compared to simulations.  
slides icon Slides  
THPMN112 Colliding Pulse Injection Experiments in Non-Collinear Geometry for Controlled Laser Plasma Wakefield Acceleration of Electrons 2975
 
  • C. Toth, E. Esarey, C. G.R. Geddes, W. Leemans, K. Nakamura, D. Panasenko, C. B. Schroeder
    LBNL, Berkeley, California
  • D. L. Bruhwiler, J. R. Cary
    Tech-X, Boulder, Colorado
 
  Funding: Supported by DOE grant DE-AC02-05CH11231, DARPA, and and INCITE computational grant.

Colliding laser pulses* have been proposed as a method for controlling injection of electrons into a laser wakefield accelerator (LWFA) and hence producing high quality relativistic electron beams with energy spread below 1% and normalized emittances below 1 micron. The original proposal relied on three coaxial pulsesI. One pulse excites a plasma wake, and a collinear pulse following behind it collides with a counterpropagating pulse forming a beat pattern that boosts background electrons into accelerating phase. A variation of this method uses only two laser pulses** which may be non-collinear. The first pulse drives the wake, and beating of the trailing edge of this pulse with the colliding pulse injects electrons. Non-collinear injection avoids optical elements on the electron beam path (avoiding emittance growth). We report on progress of non-collinear experiments at LBNL, using the Ti:Sapphire laser at the LOASIS facility of LBNL. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiment will be presented.

* E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997).** G. Fubiani, Phys. Rev. E 70, 016402 (2004).

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
THPAS017 Numerical Algorithms for Modeling Electron Cooling in the Presence of External Fields 3549
 
  • G. I. Bell, D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, A. V. Fedotov, V. Litvinenko
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-FG02-04ER84094.

The design of the high-energy cooler for the Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach. To prevent recombination between the fully stripped gold ions and co-propagating electrons, a helical undulator magnet has been proposed. In addition, to counteract space-charge defocusing, weak solenoids are proposed every 10m. To understand the effect of these magnets on the cooling rate, numerical models of cooling in the presence of external fields are needed. We present an approach from first principles using the VORPAL parallel simulation code. We solve the n-body problem by exact calculation of pair-wise collisions. Simulations of the proposed RHIC cooler are discussed, including fringe field and finite interaction time effects.

 
THPAS020 3D Simulations of Secondary Electron Generation and Transport in a Diamond Amplifier for Photocathodes 3555
 
  • D. A. Dimitrov, D. L. Bruhwiler, R. Busby, J. R. Cary
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, Q. Wu
    BNL, Upton, Long Island, New York
 
  The Relativistic Heavy Ion Collider (RHIC) contributes fundamental advances to nuclear physics by colliding a wide range of ions. A novel electron cooling section, which is a key component of the proposed luminosity upgrade for RHIC, requires the acceleration of high-charge electron bunches with low emittance and energy spread. A promising candidate for the electron source is the recently developed concept of a high quantum efficiency photoinjector with a diamond amplifier. We have started to implement algorithms, within the VORPAL particle-in-cell framework, for modeling of secondary electron and hole generation, and for charge transport in diamond. The algorithms include elastic and various inelastic scattering processes over a wide range of charge carrier energies. Initial results from the implemented capabilities will be presented and discussed.

The work at Tech-X Corp. is supported by the U. S. Department of Energy under a Phase I SBIR grant.

 
THPAS092 Electron Cooling in the Presence of Undulator Fields 3696
 
  • A. V. Fedotov, I. Ben-Zvi, D. Kayran, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
  • G. I. Bell, D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work supported by the U. S. Department of Energy.

The traditional electron cooling system used in low-energy coolers employs an electron beam immersed in a longitudinal magnetic field. In the first relativistic cooler, which was recently commissioned at Fermilab, the friction force is dominated by the non-magnetized collisions between electrons and antiprotons. The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be very high. These two contradictory requirements are satisfied in the design of the RHIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs direct numerical simulations with an excellent agreement. Simulations of ion beam dynamics in the presence of such a cooler and helical undulator is discussed in detail, including recombination suppression and resulting luminosities.

 
FROBAB01 Simulation-driven Optimization of Heavy-ion Production in ECR Sources 3786
 
  • P. Messmer, D. L. Bruhwiler, D. W. Fillmore, P. J. Mullowney, K. Paul, A. V. Sobol
    Tech-X, Boulder, Colorado
  • D. Leitner, D. S. Todd
    LBNL, Berkeley, California
 
  Funding: Work supported by the U. S. DOE Office of Science, Office of Nuclear Physics, under grant DE-FG02-05ER84173.

Next-generation heavy-ion beam accelerators require a great variety of high charge state ion beams (from protons to uranium) with up to an order of magnitude higher intensity than demonstrated with conventional Electron Cyclotron Resonance (ECR) ion sources. Optimization of the ion beam production for each element is therefore required. Efficient loading of the material into the ECR plasma is one of the key elements for optimizing the ion beam production. High-fidelity simulations provide a means to understanding where along the interior walls the uncaptured metal atoms are deposited and, hence, how to optimize loading of the metal into the ECR plasma. We are currently extending the plasma simulation framework VORPAL with models to investigate effective loading of heavy metals into ECR ion sources via alternate mechanisms, including vapor loading, ion sputtering and laser ablation. Here we will present the models, simulation results of vapor loading and initial comparisons with experiments at the VENUS source at LBNL.

 
slides icon Slides