A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Broemmelsiek, D. R.

Paper Title Page
MOPAS011 Uniform Longitudinal Beam Profiles in the Fermilab Recycler Using Adaptive RF Correction 458
  • M. Hu, D. R. Broemmelsiek, B. Chase, J. L. Crisp, N. E. Eddy, P. W. Joireman, K. Y. Ng
    Fermilab, Batavia, Illinois
  Non-uniformity in longitudinal beam profiles due to potential well distortion have been observed in the Fermilab Recycler Ring. The main source of distortion, the analysis, and the experimental verification of a solution are presented. An adaptive algorithm has been developed to remove the distortion. This algorithm has been implemented in a custom FPGA-based module, which has been integrated into the current Low Level RF system.  
THPMN102 A Muon Beam for Cooling Experiments 2948
  • A. Jansson, V. Balbekov, D. R. Broemmelsiek, M. Hu, N. V. Mokhov, K. Yonehara
    Fermilab, Batavia, Illinois
  Funding: Work supported by the US Department of Energy

Within the framework of the Fermilab Muon Collider Task Force, the possibility of developing a dedicated muon test beam for cooling experiments has been investigated. Cooling experiments can be performed in a very low intensity muon beam by tracking single particles through the cooling device. With sufficient muon intensity and large enough cooling decrement, a cooling demonstration experiment may also be performed without resolving single particle trajectories, but rather by measuring the average size and position of the beam. This allows simpler, and thus cheaper, detectors and readout electronics to be used. This paper discusses muon production using 400MeV protons from the linac, decay channel and beamline design, as well as the instrumentation required for such an experiment, in particular as applied to testing the Helical Cooling Channel (HCC) proposed by Muons Inc.

THPMN110 The MANX Muon Cooling Demonstration Experiment 2969
  • K. Yonehara, D. R. Broemmelsiek, M. Hu, A. Jansson, V. D. Shiltsev
    Fermilab, Batavia, Illinois
  • R. J. Abrams, M. A.C. Cummings, R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
  Funding: Supported in part by DOE STTR grant DE-FG02-06ER86282

MANX is an experiment to prove that effective six-dimensional (6D) muon beam cooling can be achieved a Helical Cooling Channel (HCC) using ionization-cooling with helical and solenoidal magnets in a novel configuration. The aim is to demonstrate that 6D muon beam cooling is understood well enough to plan intense neutrino factories and high-luminosity muon colliders. The experiment consists of the HCC magnets that envelop a liquid helium energy absorber, upstream and downstream instrumentation to measure the particle or beam parameters before and after cooling, and emittance matching sections between the detectors and the HCC. We describe and compare the experimental configuration for both single particle and beam profile measurement techniques based on G4Beamline simulations.