A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bradley III, J. T.

Paper Title Page
MOPAS048 Quantitative Evaluation of Magnet Hysteresis Effects at LANSCE with Respect to Magnet Power Supply Specifications 542
 
  • J. T. Bradley III, C. J. Andrews, L. F. Fernandez, M. F. Fresquez, W. Reass, W. Roybal, J. B. Sandoval
    LANL, Los Alamos, New Mexico
 
  Funding: Work supported by US Department of Energy.

The proton beam in the LANSCE accelerator is guided and focused almost exclusively by electromagnets. Magnet hysteresis has had significant impacts on the tuning of the LANSCE accelerator.* Magnet hysteresis can also have an impact on Magnet Power Supply (MPS) control, regulation and repeatability requirements. To date, MPS performance requirements have been driven by the requirements on the magnetic fields as determined by the accelerator physicists. Taking hysteresis effects into account can significantly change MPS requirements, as some requirements become more stringent and some are found to be overspecified. Overspecification of MPS requirements can result in significant increases in MPS cost. Conversely, the use of appropriate MPS requirements can result in significant cost savings. The LANSCE accelerator's more than three decades of operation provide a wide variety of magnet power supply technologies and operational experience. We will survey the LANSCE magnet power supply history and determine how performance specifications can be refined to both reduce costs and improve the operators abilities to control the magnetic fields.

*R. McCrady, "Mitigation Of Magnet Hysteresis Effects at LANSCE", LINAC 2006, August, 2006.

 
WEPMS029 LANSCE RF System Refurbishment 2400
 
  • D. Rees, G. O. Bolme, J. T. Bradley III, S. Kwon, J. T.M. Lyles, M. T. Lynch, M. S. Prokop, W. Reass, K. A. Young
    LANL, Los Alamos, New Mexico
 
  The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. The refurbishment will focus on systems that are approaching 'end of life' and systems where modern upgrades hold the promise for significant operating cost savings. The current baseline consists of replacing all the 201 MHz RF systems, upgrading a substantial fraction of the 805 MHz RF systems to high efficiency klystrons, replacing the high voltage systems, and replacing the low level RF cavity field control systems. System designs will be presented. The performance improvements will be described and the preliminary cost and schedule estimates will be discussed.