A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Borland, M.

Paper Title Page
TUPMN089 Configuration, Optics, and Performance of a 7-GeV Energy Recovery Linac Upgrade for the Advanced Photon Source 1121
 
  • M. Borland, G. Decker, A. Nassiri, M. White
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) is a 7-GeV storage ring light source that has been in operation for over a decade. In order to make revolutionary improvements in the performance of the existing APS ring, we are exploring the addition of a 7-GeV energy recovery linac (ERL) to the APS complex. In this paper, we show the possible configuration of such a system, taking into account details of the APS site and the requirement that stored beam capability be preserved. We exhibit a possible configuration for the single-pass, 7-GeV linac. We discuss optical solutions for transport from 10 MeV to 7 GeV and back, including a large turn-around arc that would support 48 additional user beamlines. Tracking results are shown that include incoherent and coherent synchrotron radiation, resulting in predictions of the beamline performance.

 
TUPMN090 Evaluation of the Possibility of Using Damping Wigglers in the Advanced Photon Source 1124
 
  • M. Borland, L. Emery
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) is a 7-GeV storage ring light source that has been in operation for over a decade. Over time, the performance of the APS has been increased by reduction of the emittance from 8 nm to 3.1 nm and by the use of top-up mode. We continue to explore options for improving the performance further. This paper discusses the possible improvements in emittance that could result from the use of damping wigglers. We also discuss rf and space requirements.

 
TUPMN091 Planned Use of Pulsed Crab Cavities for Short X-ray Pulse Generation at the Advanced Photon Source 1127
 
  • M. Borland, J. Carwardine, Y.-C. Chae, P. K. Den Hartog, L. Emery, K. C. Harkay, A. H. Lumpkin, A. Nassiri, V. Sajaev, N. Sereno, G. J. Waldschmidt, B. X. Yang
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years, we have explored application to the Advanced Photon Source (APS) of Zholents'* crab-cavity-based scheme for production of short x-ray pulses. Work concentrated on using superconducting (SC) cavities in order to have a continuous stream of crabbed bunches and flexibility of operating modes. The challenges of the SC approach are related to the size, cost, and development time of the cavities and associated systems. A good case can be made for a pulsed system** using room-temperature cavities. APS has elected to pursue such a system in the near term, with the SC-based system planned for a later date. This paper describes the motivation for the pulsed system and gives an overview of the planned implementation and issues. Among these are overall configuration options and constraints, cavity design options, frequency choice, cavity design challenges, tolerances, instability issues, and diagnostics plans.

*A. Zholents et al., NIM A 425, 385 (1999).**P. Anfinrud, private communication.

 
TUPMN093 A Kilohertz Picosecond X-Ray Pulse Generation Scheme 1133
 
  • W. Guo, M. Borland, K. C. Harkay, C.-X. Wang, B. X. Yang
    ANL, Argonne, Illinois
 
  The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of non-zero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained fom a 27-ps electron bunch at the Advanced Photon Source. Based on this principle we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1~2 kHz, which can be used for pump-probe experiments. The tilt phenomenon can also be utilized for machine parameter measurement.  
TUPMN096 New Lattice Design for APS Storage Ring with Potential Tri-fold Increase of the Number of Insertion Devices 1139
 
  • V. Sajaev, M. Borland, A. Xiao
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

APS has recently held a round of discussions on upgrade options for the APS storage ring. Several options were discussed that included both storage ring and energy-recovery linac options. Here we present a storage ring lattice that fits into the APS tunnel and has a number of significant improvements over the existing storage ring. The present APS lattice has 40-fold symmetry with each sector having one 5-m-long straight section for insertion device (ID) placement. Each sector also provides one beamline for radiation from the bending magnet. The upgrade lattice preserves locations of the existing insertion devices but provides for increased ID straight section length to accommodate 8-m-long insertion devices. This lattice also decreases emittance by a factor of two down to 1.6 nm rad. And last but not least, it provides two additional 2.1-m-long ID straight sections per sector with one of these straight sections being parallel to the existing bending magnet beamline. We also present dynamic aperture optimization, lifetime calculations, and other nonlinear-dynamics-related simulations.

 
TUPMN099 An Energy Recovery Linac Upgrade for the Advanced Photon Source Located in the Storage Ring Infield 1145
 
  • N. Sereno, M. Borland, H. W. Friedsam
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In the recent past, the Advanced Photon Source (APS) was asked by the U. S. Department of Energy to explore a revolutionary upgrade based on emerging energy recovery linac (ERL) technology. In an ERL, the energy of the 7-GeV, 100-mA beam is recovered after the beam passes through user beamlines by decelerating the beam back through the same superconducting linac cavities that accelerated it. The main constraint on this upgrade is that the existing APS beamlines not be disturbed. This requires that the APS storage ring be used as a single-pass transport line in the overall ERL beamline layout. A natural place to locate the ERL is inside the existing APS storage ring ‘‘infield'' area, which has unoccupied space south of the existing APS injector complex. Other important constraints include minimal disturbance of existing building structures and injector beamlines. The existing injector complex would be preserved so that existing operation can be continued through and even possibly beyond ERL commissioning. In this paper, we describe a layout that satisfies these constraints. We also estimate the amount of emittance increase the beam will experience before ring injection.

 
WEPMS038 RF Design of Normal Conducting Deflecting Structures for the Advanced Photon Source 2427
 
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • M. Borland, G. J. Waldschmidt
    ANL, Argonne, Illinois
 
  Use of normal conducting deflecting structures for production of short x-ray pulses is now being implemented at the Advanced Photon Source (APS). The structures have to produce up to 6 MV maximum deflection per structure at a 1kHz repetition rate. At the same time, the nominal beam quality must be maintained throughout the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structure with heavy wakefield damping. In this paper, we discuss the design considerations and present our current results.  
THPAN089 Beam Dynamics, Performance, and Tolerances for Pulsed Crab Cavities at the Advanced Photon Source for Short X-ray Pulse Generation 3429
 
  • M. Borland, L. Emery, V. Sajaev
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source (APS) has decided to implement a system using pulsed* crab cavities to produce short x-ray pulses using Zholents'** scheme. This paper describes beam dynamics issues related to implementation of this scheme in a single APS straight section. Modeling of the cavity is used to demonstrate that the deflection will be independent of transverse position in the cavity. Parameters and performance for a standard and lengthened APS straight section are shown. Finally, tolerances are discussed and obtained from tracking simulations.

* M. Borland et al., these proceedings.** A. Zholents et al., NIM A 425, 385 (1999).

 
THPAN093 Booster Requirements for Advanced Photon Source 1-nm Emittance Upgrade Lattices 3438
 
  • N. Sereno, M. Borland
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

In recent years, we have explored various upgrade options for the Advanced Photon Source (APS) storage ring that would provide the user community higher brightness. Increased brightness would be accomplished by reducing the emittance of the storage ring as well as increasing the stored beam current from 100 mA to 200 mA. Two upgrade lattices were developed that reduce the effective beam emittance to 1 nm from the present 2.7 nm. These lattices have reduced dynamic aperture compared to the present ring lattice, which may require a reduced emittance booster to minimize injection losses. This paper describes injection tracking simulations that explore how high the booster emittance can be and still have no losses at injection for the 1-nm ring upgrade lattices. An alternative booster lattice is presented with reduced emittance compared to the present booster lattice (65 nm). The proposed low-emittance booster lattice would add pole-face windings to the existing booster dipoles and hence would not require replacement of the existing booster magnets.

 
THPAN095 Implementation and Performance of Parallelized Elegant 3444
 
  • Y. Wang, M. Borland
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The program Elegant* is widely used for design and modeling of linacs for free-electron lasers and energy recovery linacs, as well as storage rings and other applications. As part of a multi-year effort, we have parallelized many aspects of the code, including single-particle dynamics, wakefields, and coherent synchrotron radiation. We report on the approach used for gradual parallelization, which proved very beneficial in getting parallel features into the hands of users quickly. We also report details of parallelization of collective effects. Finally, we discuss performance of the parallelized code in various applications.

*M. Borland, APS Light Source Note LS-287, September 2000.

 
THPAN096 A 1-nm Emittance Lattice for the Advanced Photon Source Storage Ring 3447
 
  • A. Xiao, M. Borland, V. Sajaev
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

We present a triple-bend lattice design that uses the current APS tunnel. The new lattice has a 1 nm-rad effective emittance at 7 GeV. A forty-period symmetric optics is presented. For the benefit of some X-ray user experiments, an optics with four special straight sections of one-third the beam size of normal sections was investigated as well. The associated nonlinear optical difficulties are addressed and simulation results are presented.

 
THPAN098 Touschek Effect Calculation and Its Application to a Transport Line 3453
 
  • A. Xiao, M. Borland
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Touschek effect is a major concern for lepton storage rings of low emittance (i.e., high bunch density) and low or moderate beam energy, such as third-generation synchrotron light sources. Piwinski's formula, which includes beam shape variation along the beamline and which is suitable for any beam energy, has been incorporated into a program that interoperates with elegant for use in lifetime calculations. The difference between using Piwinski's method and other simplified methods for the APS is shown in this paper. Furthermore, because of the generality of this formula, we also applied it to transport lines to predict beam loss rates and beam loss locations for the first time. An example related to a possible energy recovery linac upgrade of the APS (APS-ERL) is also given in this paper.

 
THPAN099 Direct Space-Charge Calculation in Elegant and Its Application to the ILC Damping Ring 3456
 
  • A. Xiao, M. Borland, L. Emery, Y. Wang
    ANL, Argonne, Illinois
  • K. Y. Ng
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

A direct space-charge force model has been implemented in the tracking code elegant. The user can simulate transverse space-charge effects by inserting space-charge elements in the beamline at any desired position. Application to the International Linear Collider damping ring is presented in this paper. We simulated beam under equilibrium conditions, as well as the entire damping cycle from injection to extraction. Results show that beam halo is generated due to space charge effects. This would be a significant concern for the ILC damping ring and a detailed follow-up study is needed.