A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bellantoni, L.

Paper Title Page
WEPMN079 Power Coupler for the ILC Crab Cavity 2212
 
  • G. Burt, R. G. Carter, A. C. Dexter, R. O. Jenkins
    Cockcroft Institute, Lancaster University, Lancaster
  • C. D. Beard, P. Goudket, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. Bellantoni
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the EC under the FP6 "Research Infrasctructure Action - Structuring the European Research Area" EUROTeV DS Project Contract no.011899 RIDS and PPARC.

The ILC crab cavity will require the design of an appropriate power coupler. The beamloading in dipole cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

 
WEPMN096 Status of the 3.9-GHz Superconducting RF Cavity Technology at Fermilab 2254
 
  • E. R. Harms, T. T. Arkan, L. Bellantoni, H. Carter, H. Edwards, M. Foley, T. N. Khabiboulline, D. V. Mitchell, D. R. Olis, A. M. Rowe, N. Solyak
    Fermilab, Batavia, Illinois
 
  Funding: This work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

Fermilab is involved in an effort to assemble 3.9 GHz superconducting RF cavities into a four cavity cryomodule for use at the DESY TTF/FLASH facility as a third harmonic structure. The design gradient of these cavities is 14 MV/m limited by thermal heat transfer. This effort involves design, fabrication, intermediate testing, assembly, and eventual delivery of the cryomodule. We report on all facets of this enterprise from design through future plans. Included will be test results of single 9-cell cavities, lessons learned, and current status.

 
WEPMN105 Fast Thermometry for Superconducting RF Cavity Testing 2280
 
  • D. F. Orris, L. Bellantoni, R. H. Carcagno, H. Edwards, E. R. Harms, T. N. Khabiboulline, S. Kotelnikov, A. Makulski, R. Nehring, Y. M. Pischalnikov
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several RTDs were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of this fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

 
WEPMS050 HOM and LOM Coupler Optimizations for the ILC Crab Cavity 2457
 
  • L. Xiao, K. Ko, Z. Li, C.-K. Ng, G. L. Schussman, A. Seryi, R. Uplenchwar
    SLAC, Menlo Park, California
  • L. Bellantoni
    Fermilab, Batavia, Illinois
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster
  • P. Goudket, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515

The FNAL 9-cell 3.9GHz deflecting cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. Effective damping is required for the lower-order TM01 modes (LOM), the same-order TM11 modes (SOM) as well as the HOM modes to minimize the beam loading and beam centroid steering due to wakefields. Simulation results of the original CKM design using the eigensolver Omega3P showed that both the notch filters of the HOM/LOM couplers are very sensitive to the notch gap, and the damping of the unwanted modes is suboptimal for the ILC. To meet the ILC requirements, the couplers were redesigned to improve the damping and tuning sensitivity. With the new design, the damping of the LOM/SOM/HOM modes is significantly improved, the sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude and appears mechanically feasible, and the LOM coupler is simplified by aligning it on the same plane as the SOM coupler and by eliminating the notch filter. In this paper, we will present the coupler optimization and tolerance studies for the crab cavity.

 
WEOCAB01 Design of the Beam Delivery System for the International Linear Collider 1985
 
  • A. Seryi, J. A. Amann, R. Arnold, F. Asiri, K. L.F. Bane, P. Bellomo, E. Doyle, A. F. Fasso, L. Keller, J. Kim, K. Ko, Z. Li, T. W. Markiewicz, T. V.M. Maruyama, K. C. Moffeit, S. Molloy, Y. Nosochkov, N. Phinney, T. O. Raubenheimer, S. Seletskiy, S. Smith, C. M. Spencer, P. Tenenbaum, D. R. Walz, G. R. White, M. Woodley, M. Woods, L. Xiao
    SLAC, Menlo Park, California
  • I. V. Agapov, G. A. Blair, S. T. Boogert, J. Carter
    Royal Holloway, University of London, Surrey
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun
    LAL, Orsay
  • M. Anerella, A. K. Jain, A. Marone, B. Parker
    BNL, Upton, Long Island, New York
  • D. A.-K. Angal-Kalinin, C. D. Beard, J.-L. Fernandez-Hernando, P. Goudket, F. Jackson, J. K. Jones, A. Kalinin, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • J. L. Baldy, D. Schulte
    CERN, Geneva
  • L. Bellantoni, A. I. Drozhdin, V. S. Kashikhin, V. Kuchler, T. Lackowski, N. V. Mokhov, N. Nakao, T. Peterson, M. C. Ross, S. I. Striganov, J. C. Tompkins, M. Wendt, X. Yang
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows, G. B. Christian, C. I. Clarke, A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • G. Burt, A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  • J. Carwardine, C. W. Saunders
    ANL, Argonne, Illinois
  • B. Constance, H. Dabiri Khah, C. Perry, C. Swinson
    JAI, Oxford
  • O. Delferriere, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • C. J. Densham, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Enomoto, S. Kuroda, T. Okugi, T. Sanami, Y. Suetsugu, T. Tauchi
    KEK, Ibaraki
  • A. Ferrari
    UU/ISV, Uppsala
  • J. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • W. Lohmann
    DESY Zeuthen, Zeuthen
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. M. Mattison
    UBC, Vancouver, B. C.
  • T. S. Sanuki
    University of Tokyo, Tokyo
  • V. I. Telnov
    BINP SB RAS, Novosibirsk
  • E. T. Torrence
    University of Oregon, Eugene, Oregon
  • D. Warner
    Colorado University at Boulder, Boulder, Colorado
  • N. K. Watson
    Birmingham University, Birmingham
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design.  
slides icon Slides  
THPAS079 A Copper 3.9 GHz TM110 Cavity for Emittance Exchange 3663
 
  • T. W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • L. Bellantoni, D. A. Edwards, H. Edwards, R. P. Fliller
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

An experiment is being constructed at Fermilab's A0 Photoinjector to exchange longitudinal and transverse beam emittances. The exchange is preformed by an optics channel consisting of two dogleg bend sections with a transverse deflecting mode cavity between them. In this paper we discuss the construction of the TM110 Mode Cavity. The cavity, based on a superconducting design will be constructed of copper. In addition, the cavity will be cooled with liquid nitrogen to fit within power and mode spacing requirements. The TM110 cavity operating requirements are presented as will the detail of the design, construction, tuning, and commissioning of the TM110 cavity.