A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Beebe, E. N.

Paper Title Page
TUPAS083 Design and Performance of the Matching Beamline between the BNL EBIS and an RFQ 1844
  • J. G. Alessi, E. N. Beebe, J. Brodowski, A. Kponou, M. Okamura, A. I. Pikin, D. Raparia, J. Ritter, L. Snydstrup, V. Zajic
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy and the U. S. National Aeronautics and Space Administration.

A part of a new EBIS-based heavy ion preinjector, the low energy beam transport (LEBT) section between the high current EBIS and the RFQ is a challenging design, because it must serve many functions. In addition to the requirement to provide an efficient matching between the EBIS and the RFQ, this line must serve as a fast switchyard, allowing singly charged ions from external sources to be transported into the EBIS trap region, and extracted, highly charged ions to be deflected to off-axis diagnostics (time-of-flight, or emittance). The space charge of the 5-10 mA extracted heavy ion beam is a major consideration in the design, and the space charge force varies for different ion beams having Q/m from 1-0.16. The line includes electrostatic lenses, spherical and parallel-plate deflectors, magnetic solenoid, and diagnostics for measuring current, charge state distributions, emittance, and profile. A prototype of this beamline has been built, and results of tests will be presented.

TUPAS104 Heavy Ion Driver with the Non-Scaling FFAG 1880
  • A. G. Ruggiero, J. G. Alessi, E. N. Beebe, A. I. Pikin, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York
  Funding: Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. ** Work supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231

We explore the possibility of using two non-scaling FFAG with a smaller number of distributed RF cavities for a high power heavy ion driver. The pulsed heavy ion source would consist of an Electron Beam Ion Source (EBIS), fed continuously from a high charge state Electron Cyclotron Resonance (ECR) source. The Radio Frequency Quadrupole (RFQ) and a short 10 MeV/u linac would follow the ion source. Microseconds long heavy ion beam bunches from the EBIS would be injected in a single turn into a multi-pass small aperture non-scaling Fixed Field Alternating Gradient (FFAG) accelerator. The heavy ion maximum kinetic energy is assumed to be 400 MeV/u with a total of 400 kW power for uranium ion beams. Partially stripped heavy ions would be accelerated from 10 MeV/u to 67 MeV/u with a first non-scaling FFAG, while, after further stripping, a second non-scaling FFAG would accelerate from 67 to 400 MeV/u.

FRYAB02 High-Performance EBIS for RHIC 3782
  • J. G. Alessi, E. N. Beebe, O. Gould, A. Kponou, R. Lockey, A. I. Pikin, D. Raparia, J. Ritter, L. Snydstrup
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy and the U. S. National Aeronautics and Space Administration.

An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS will be presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, will also be mentioned.

slides icon Slides