A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bane, K. L.F.

Paper Title Page
TUOCAB02 Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane 807
 
  • P. Emma, K. L.F. Bane, Y. T. Ding, J. C. Frisch, Z. Huang, H. Loos, G. V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  • E. Prat
    DESY, Hamburg
  • F. Sannibale, K. G. Sonnad, M. S. Zolotorev
    LBNL, Berkeley, California
 
  Funding: U. S. Depertment of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through the first bunch compressor chicane was installed during the Fall of 2006. The first bunch compressor chicane is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. The degree of compression is highly adjustable using RF phasing and also chicane magnetic field variations. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression where coherent radiation effects are expected to be striking.

 
slides icon Slides  
WEPMS037 RF Distribution Optimization in the Main Linacs of the ILC 2424
 
  • K. L.F. Bane, C. Adolphsen, C. D. Nantista
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515.

The nominal design gradient for the ILC is 31.5 MV/m, but the L-band superconducting cavities built to date have demonstrated a range in sustainable gradient extending below this goal, limited by Q-dropoff and quenching. An economically feasible cavity acceptance rate will include in the linacs a certain percentage of sub-performing cavities. We examine how, with a customizable RF distribution scheme, one can most efficiently distribute power from one klystron amongst 24 nine-cell cavities. The nominal cavity fills to the design gradient at the time the beam arrives, after which the beamloading voltage exactly cancels any further rise, yielding constant gradient during the bunch train. Along with adjustable RF power, we assume adjustable cavity coupling, or loaded quality factor, so that the gradient can be leveled in non-nominal cavities, to avoid quench-inducing overshoots. We explore these and related issues for the ILC linac high-power RF.

 
THPMS039 Wakefield Effects in the Beam Delivery System of the ILC 3088
 
  • K. L.F. Bane, A. Seryi
    SLAC, Menlo Park, California
 
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515

The main linac of the International Linear Collider (ILC) accelerates short, high peak current bunches into the Beam Deliver System (BDS) on the way to the interaction point. In the BDS wakefields are excited by the resistance of the beam pipe walls and by beam pipe transitions that will tend to degrade the emittance of the beam bunches. In this report we calculate the effect on emittance of incoming jitter or drift, and of misalignments of the beam pipes with respect to the beam axis, both analytically and through multi-particle tracking. Finally, we discuss ways of ameliorating the wake effects in the BDS.

 
THPMS049 Investigations of the Wideband Spectrum of Higher Order Modes Measured on TESLA-style Cavities at the FLASH Linac 3100
 
  • S. Molloy, C. Adolphsen, K. L.F. Bane, J. C. Frisch, Z. Li, J. May, D. J. McCormick, T. J. Smith
    SLAC, Menlo Park, California
  • N. Baboi
    DESY, Hamburg
  • N. E. Eddy, L. Piccoli, R. Rechenmacher
    Fermilab, Batavia, Illinois
  • R. M. Jones
    UMAN, Manchester
 
  Funding: US DOE Contract #DE-AC02-76SF00515

Higher Order Modes (HOMs) excited by the passage of the beam through an accelerating cavity depend on the properties of both the cavity and the beam. It is possible, therefore, to draw conclusions on the inner geometry of the cavities based on observations of the properties of the HOM spectrum. A data acquisition system based on two 20 GS/s, 6 GHz scopes has been set up at the FLASH facility, DESY, in order to measure a significant fraction of the HOM spectrum predicted to be generated by the TESLA cavities used for the acceleration of its beam. The HOMs from a particular cavity at FLASH were measured under a range of known beam conditions. The dipole modes have been identified in the data. 3D simulations of different manufacturing errors have been made, and it has been shown that these simulations can predict the measured modes.

 
WEOCAB01 Design of the Beam Delivery System for the International Linear Collider 1985
 
  • A. Seryi, J. A. Amann, R. Arnold, F. Asiri, K. L.F. Bane, P. Bellomo, E. Doyle, A. F. Fasso, L. Keller, J. Kim, K. Ko, Z. Li, T. W. Markiewicz, T. V.M. Maruyama, K. C. Moffeit, S. Molloy, Y. Nosochkov, N. Phinney, T. O. Raubenheimer, S. Seletskiy, S. Smith, C. M. Spencer, P. Tenenbaum, D. R. Walz, G. R. White, M. Woodley, M. Woods, L. Xiao
    SLAC, Menlo Park, California
  • I. V. Agapov, G. A. Blair, S. T. Boogert, J. Carter
    Royal Holloway, University of London, Surrey
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun
    LAL, Orsay
  • M. Anerella, A. K. Jain, A. Marone, B. Parker
    BNL, Upton, Long Island, New York
  • D. A.-K. Angal-Kalinin, C. D. Beard, J.-L. Fernandez-Hernando, P. Goudket, F. Jackson, J. K. Jones, A. Kalinin, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • J. L. Baldy, D. Schulte
    CERN, Geneva
  • L. Bellantoni, A. I. Drozhdin, V. S. Kashikhin, V. Kuchler, T. Lackowski, N. V. Mokhov, N. Nakao, T. Peterson, M. C. Ross, S. I. Striganov, J. C. Tompkins, M. Wendt, X. Yang
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows, G. B. Christian, C. I. Clarke, A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • G. Burt, A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  • J. Carwardine, C. W. Saunders
    ANL, Argonne, Illinois
  • B. Constance, H. Dabiri Khah, C. Perry, C. Swinson
    JAI, Oxford
  • O. Delferriere, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • C. J. Densham, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Enomoto, S. Kuroda, T. Okugi, T. Sanami, Y. Suetsugu, T. Tauchi
    KEK, Ibaraki
  • A. Ferrari
    UU/ISV, Uppsala
  • J. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • W. Lohmann
    DESY Zeuthen, Zeuthen
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. M. Mattison
    UBC, Vancouver, B. C.
  • T. S. Sanuki
    University of Tokyo, Tokyo
  • V. I. Telnov
    BINP SB RAS, Novosibirsk
  • E. T. Torrence
    University of Oregon, Eugene, Oregon
  • D. Warner
    Colorado University at Boulder, Boulder, Colorado
  • N. K. Watson
    Birmingham University, Birmingham
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design.  
slides icon Slides  
FRPMS061 Impedance and Single Bunch Instability Calculations for the ILC Damping Rings 4141
 
  • K. L.F. Bane, S. A. Heifets, Z. Li, C.-K. Ng, A. Novokhatski, G. V. Stupakov, R. L. Warnock
    SLAC, Menlo Park, California
  • M. Venturini
    LBNL, Berkeley, California
 
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515

One of the action items for the damping rings of the International Linear Collider (ILC) is to compute the broad-band impedance and, from it, the threshold to the microwave instability. For the ILC it is essential that the operating current be below threshold. Operating above threshold would mean that the longitudinal emittance of the beam would be increased. More seriously, above threshold there is the possibility of time dependent variation in beam properties (e.g. the "sawtooth" effect) that can greatly degrade collider performance. In this report, we present the status of our study including calculations of: an impedance budget, a pseudo-Green's function suitable for Haissinski equation and instability calculations, and instability calculations themselves.

 
FRPMS079 SUPPRESSION OF SECONDARY ELECTRON EMISSION USING TRIANGULAR GROOVED SURFACE IN THE ILC DIPOLE AND WIGGLER MAGNETS 4234
 
  • L. Wang, K. L.F. Bane, C. Chen, T. M. Himel, M. Munro, M. T.F. Pivi, T. O. Raubenheimer, G. V. Stupakov
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in PEP-II in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

SLAC-PUB-11933 & NIMA in publication