A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ball, M.

Paper Title Page
MOPAS005 System Overview for the Multi-element Corrector Magnets and Controls for the Fermilab Booster 449
 
  • C. C. Drennan, M. Ball, A. R. Franck, D. J. Harding, P. A. Kasley, G. E. Krafczyk, M. J. Kucera, J. R. Lackey, D. McArthur, J. R. Misek, W. Pellico, E. Prebys, A. K. Triplett, D. Wolff
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U. S. Department of Energy

To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and will be installation in 48 locations in the Booster accelerator. Each of these 288 corrector magnets will be individually powered. Each of the magnets will be individually controlled using operator programmed current ramps designed specifically for the each type of Booster acceleration cycle. This paper provides an overview of the corrector magnet installation in the accelerator enclosure, power and sensor interconnections, specifications for the switch-mode power supplies, rack and equipment layouts, controls and interlock electronics, and the features of the operator interface for programming the current ramps and adjusting the timing of the system triggers.

 
TUPAS046 Uniform Beam Intensity Redistribution in the LENS Nonlinear Transport Line 1748
 
  • A. Bogdanov, V. Anferov, M. Ball, D. V. Baxter, V. P. Derenchuk, A. V. Klyachko, T. Rinckel, K. A. Solberg
    IUCF, Bloomington, Indiana
 
  Funding: The LENS project is supported by the NSF (grants DMR-0220560, DMR-0242300), the 21st Century Science and Technology fund of Indiana, Indiana University, and the Department of Defense

The Low Energy Neutron Source (LENS) at Indiana University is producing neutrons by using a 7 MeV proton beam incident on a Beryllium target. The Proton Delivery System is currently being upgraded. A new DTL section will be added to increase proton beam energy from 7 to 13 MeV. A 3 MeV RFQ and 13 MeV DTL will be powered by 1 MW klystrons. The goal of this upgrade is a 13 MeV, 20 mA proton beam with duty factor more than 1%. At this power level it becomes increasingly important to make a proton beam that is uniformly distributed to prevent excessive thermal stress at the surface of the Be target. To achieve this goal two octupole magnets are being implemented in the LENS beam transport line. In this paper we discuss the experimental results of the beam intensity redistribution as well as some features inherent in tuning of the nonlinear beamline and our operational experience.

 
THOAAB02 Upgrade of the LENS Proton Linac: Commissioning and Results 2611
 
  • A. Bogdanov, V. Anferov, M. Ball, D. V. Baxter, V. P. Derenchuk, A. V. Klyachko, T. Rinckel, P. E. Sokol, K. A. Solberg
    IUCF, Bloomington, Indiana
 
  Funding: The LENS project is supported by the NSF (grants DMR-0220560, DMR-0242300), the 21st Century Science and Technology fund of Indiana, Indiana University, and the Department of Defense

A Low Energy Neutron Source at Indiana University provides cold neutrons for material research and neutron physics as well as neutrons in the MeV energy range for the neutron radiation effects studies. Neutrons are being produced by a 7 MeV proton beam incident on a Beryllium target. Presently, the Proton Delivery System has been routinely running at 7 MeV, 8 mA and with up to 0.5% duty factor. The RF system of the accelerator is currently being upgraded by replacing 350 kW 425 MHz 12 tube amplifiers with two Litton 5773 klystron RF tubes capable of running at 425 MHz and 1 MW. A new DTL section will be added to increase proton beam energy from 7 to 13 MeV. A 3 MeV RFQ and 13 MeV DTL will be powered by the klystrons. The expected output is 20 mA and 13 MeV of proton current at more than 1% duty factor. Other upgrades include construction of the 2nd beamline, which copies the 1st line, and a new target station for the production of cold neutrons. In this contribution we discuss the results of the commissioning of the new DTL accelerator, new RF system and 2nd beamline. The future plans will also be outlined.

 
slides icon Slides