A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Baca, D.

Paper Title Page
WEPMS023 Progress on New High Power RF System for LANSCE DTL 2382
  • J. T.M. Lyles, S. Archuletta, D. Baca, J. Davis, D. Rees, P. A. Torrez
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396

A new 200 MHz RF system is being developed for the LANSCE proton drift tube linac (DTL). A planned upgrade will replace parts of the DTL RF system with new generation components. When installed for the LANSCE-R project, the new system will reduce the total number of electron power tubes from twenty-four to seven in the DTL plant. The 3.4 MW final power amplifier will use a Thales TH628 Diacrode. This state-of-the-art device eliminates the large anode modulator of the present triode system, and will be driven by a new tetrode intermediate power amplifier. In this mode of operation, this intermediate stage will provide 150 kW of peak power. The first DTL tank requires up to 400 kW of RF power, which will be provided by the same tetrode driver amplifier. A prototype system is being constructed to test components, using some of the infrastructure from previous RF projects. High voltage DC power became available through innovative re-engineering of an installed system. A summary of the design and construction of the intermediate power amplifier will be presented and test results will be summarized.

TUXAB01 Absolute Measurement of Electron Cloud Density 754
  • M. Kireeff Covo, R. H. Cohen, A. Friedman, A. W. Molvik
    LLNL, Livermore, California
  • D. Baca, F. M. Bieniosek, B. G. Logan, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • J. L. Vujic
    UCB, Berkeley, California
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy, LLNL and LBNL, under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 us duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.*

* M. Kireeff Covo, A. W. Molvik, A. Friedman, J.-L. Vay, P. A. Seidl, G. Logan, D. Baca, and J. L. Vujic, Phys. Rev. Lett. 97, 054801 (2006).

slides icon Slides