A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Baartman, A.

Paper Title Page
THPAN004 Runge-Kutta DA Integrator in Mathematica Language 3226
 
  • A. Baartman, D. Kaltchev
    TRIUMF, Vancouver
 
  The method of Truncated Power Series Algebra is applied in a Mathematica code to compute the transfer map for arbitrary equations of motion (EOM) describing a charged particle optical system. The code is a non-symplectic integrator – a combination between differential algebra module and a numerical solver of EOM. Using the symbolic system offers some advantages, especially in case of non-autonomous EOM (element with fringe-fields). An example is given – a soft-fringe map of a magnetic quadrupole.  
THPAN005 Short Quadrupole Parametrization 3229
 
  • A. Baartman, D. Kaltchev
    TRIUMF, Vancouver
 
  Funding: National Research Council (Canada)

The Enge function can be used to parametrize any element with well-defined edges. If an element is too short, however, there is no unambiguous definition of the effective edge. We first demonstrate that very little fringe field detail is needed to obtain accurate maps even up to fifth order. Then we go on to show a simple fitting algorithm that works well for short as well as long quadrupoles. The results are true whether the quads are magnetic or electrostatic.

 
THPAN008 TRIUMF Extraction and 500 MeV Beamline Optics 3238
 
  • Y.-N. Rao, A. Baartman
    TRIUMF, Vancouver
 
  The beamline 2A, one of TRIUMF cyclotron primary extraction beamlines, is 60m in length. It is now routinely operating up to 70uA (proton beam) at 500MeV for ISAC. ISAC requires a diffuse spot of specific size on the radioactive beam production target at the end of 2A. To help achieve this, we developed a program aimed at obtaining a better understanding and more accurate description of 2A optics and the extracted beam from the cyclotron. The beam envelopes along 2A were measured with profile monitors and compared with theoretical predictions. During the course of this work, we discovered that the transfer matrix, involved in the optics calclations, between the stripping foil and the beamline entrance was incorrect. After correcting this error, we obtained good agreement between the measured and calculated envelopes. We report on the details of this work as well as on a measurement of the beam characteristics as a function of stripper foil thickness.