A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Anderson, D. E.

Paper Title Page
MOPAS079 Spallation Neutron Source (SNS) High Pulse Repetition Rate Considerations 614
 
  • M. P. McCarthy, D. E. Anderson, I. E. Campisi, F. Casagrande, R. I. Cutler, G. W. Dodson, J. Galambos, D. P. Gurd, Y. W. Kang, K.-U. Kasemir, S.-H. Kim, H. Ma, B. W. Riemer, J. P. Schubert, M. P. Stockli
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Increasing the pulse repetition rate (PRR) of the SNS Linac to its designed maximum of 60 Hz to provide 1.4 MW of beam on target is in progress. Operation above 60 Hz in the future to provide beam to a second target is also being considered. Increasing the PRR to 80 Hz would allow the additional pulses to be diverted to a second target. This paper discusses the impact of increasing the PRR on the SNS infrastructure including Radio Frequency (RF) systems and structures, the ion source, cryogenics, controls and the target.

 
WEPMS028 Converter-Modulator Design and Operations for the ILC L-band Test Stand 2397
 
  • W. Reass
    LANL, Los Alamos, New Mexico
  • C. Adolphsen, T. G. Beukers, C. Burkhart, R. L. Cassel, M. N. Nguyen, G. C. Pappas, R. Swent, A. C. de Lira
    SLAC, Menlo Park, California
  • D. E. Anderson
    ORNL, Oak Ridge, Tennessee
 
  Funding: This work supported by Stanford Linear Accelerator Center, Oak Ridge National Laboratory, and the Department of Energy.

To facilitate a rapid response to the International Linear Collider (ILC) L-Band development program at SLAC, a spare converter-modulator was shipped from Los Alamos. This modulator was to be a spare for the Spallation Neutron Source (SNS) accelerator at ORNL. The ILC application requires a 33% higher peak output power (15 MW) and output current (130 Amp). This presents significant design challenges to modify the existing hardware and yet maintain switching parameters and thermal cycling within the semiconductor component ratings. To minimize IGBT commutation and free-wheeling diode currents, a different set of optimizations, as compared to the SNS design, were used to tune the resonant switching networks. Additional complexities arose as nanocrystalline cores with different performance characteristics (as compared to SNS), were used to fabricate the resonant "boost" transformers. This paper will describe the electrical design, system modifications, modeling efforts, and resulting electrical performance as implemented for the ILC L-band test stand.

 
WEPMS074 Design and High Power Processing of RFQ Input Power Couplers 2505
 
  • Y. W. Kang, A. V. Aleksandrov, D. E. Anderson, M. S. Champion, M. T. Crofford, P. E. Gibson, T. W. Hardek, P. Ladd, M. P. McCarthy, D. Stout, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

A RF power coupling system has been developed for future upgrade of input coupling of the RFQ in the SNS linac. The design employs two coaxial loop couplers for 402.5 MHz operation. Each loop is fed through a coaxial ceramic window that is connected to an output of a magic-T waveguide hybrid through a coaxial to waveguide transition. The coaxial loop couplers are designed, manufactured, and high power processed. Two couplers will be used in parallel to power the accelerating structure with up to total 800 kW peak power at 8% duty cycle. RF and mechanical properties of the couplers are discussed. Result of high power RF conditioning that is performed in the RF test facility of the SNS is presented.