
Abstract
Those working with alternating-gradient (A-G) systems

look for simple, accurate ways to analyze A-G performance
for matched beams. The useful K-V equations [1] are easily
solved in the smooth approximation [2], [3], [4]. This
approximate solution becomes quite inaccurate for
applications with large focusing fields and phase advances.
Results of efforts to improve the accuracy [5], [6] have
tended to be indirect or complex. Our generalizations
presented previously [7] gave better accuracy in a simple
explicit format. However, the method used to derive our
results (expansion in powers of a small parameter) was
complex and hard to follow; also, reference [7] only gave
low-order correction formulas.

The present paper uses a straightforward iteration
method and obtains equations of higher order than shown
in our previous paper.

The K-V equations for the envelopes a(z) and b(z) are

a(z)′′  =   –K(z) a  + ∈2

a3

    +
2 Q
a+ b

(1)

 b(z)′′  =   +K(z) b  + ∈2

b3

    +
2 Q
a+ b

(2)

with input parameters:  normalized beam current Q; emit-
tance ∈; and A-G focus function K(z).  The z origin is
located at the midpoint of a quadrupole and K(z) is
assumed here to be symmetric about z=0, periodic over a
cell length 2L, and antisymmetric about L/2.  Thus

K(z–2L)= K(z),   K(–z)=K(z),   K(z–L) =–K(z).      (3)

We solve for the x and y beam envelopes a(z) and b(z),
assumed to be matched to the lattice, i.e., periodic over 2L. 
To aid the solution of Eqs. (1) and (2), we define in Eqs.
(4)-(19) the operators on even periodic functions 〈…〉,
{…}, ∫ and ∫∫; the even periodic functions h(z), g(z), δ(z)
and ρ(z); and the constants k, α, β, q, A, Keff, Φ, and ρm. 
In Eq. (19), h1 is the first  Fourier coefficient of h(z).

The operator 〈…〉 performs an average over a cell length
2L while the operator {…} removes the average part of a

periodic function: e.g., 2{cos2x}={1+cos2x}= cos2x. The
operator ∫∫ operates on periodic functions that have no
average. It gives the repeated indefinite integral and
removes the average part, if any, of the result.

DECOUPLING  AND  DECOMPOSING

With the quadrupole symmetries of Eq. (3), our matched
beam assumption implies b(z)=a(z+L), so that Eqs. (1) and
(2) are decoupled.  We have 〈a〉 = 〈b〉 ≡ A, and

a  =  A(1 + ρ),    b = A(1 + ρb).                   (20)

The Q terms in Eqs. (1) and (2) can be expanded as

2 Q
a+ b

 =
Q
A

(1 – (ρ+ρb)/2+…) =
Q
A

(1 – k2δ(z)+…), (21)

since [8]
(ρ+ρb)/2  =   k2δ(z) +…  . (22)

with δ(z) [Eq. (11)] derived from the lattice waveform h(z).
This decouples Eqs. (1) and (2). After the decoupled

version of Eq. (1) is solved for a(z), then b(z) is found by
symmetry.  Equation (2) is no longer needed.

Substituting a = A(1+ρ) in the first three terms of Eq.
(1), expanding 1/a3, dividing by A, and using (21) and (15),
the first K-V equation is equivalent to

 ρ(z)′′ = –kh(z) – kh(z)ρ + α
3 (1 – 3ρ + 6ρ2 –10ρ3+15ρ4…)

+ q(1 – k2δ(z)…). (23)

To solve for the ripple ρ(z) and the mean radius A (which
appears in the definitions of α and q), we decompose Eq.
(23) into a pair of equations. Averaging Eq. (23),

0 = –k 〈hρ〉+ α
3 + 2α 〈ρ2 〉 – 10

3 α〈ρ3 〉 + 5α〈ρ4〉… + q.   (24)

Subtracting Eq. (24) from (23),

 ρ′′ = –kh(z) – k{hρ} – αρ+ 2α{ρ2}- 10
3 α{ρ3} + 5α{ρ4}…

–  qk2δ(z)… ,     (25)

with {..} from Eq. (5). There are now two equations, each
containing A and ρ(z). Because of our periodicity con-
straint these have the essence of the K-V equations (1), (2).

ITERATIVE SOLUTION

On the right of Eq. (25), the kh(z) term dominates the
terms involving the unknown function ρ(z). They are
omitted for the initial integrations, which give ρ(0). Then we
insert ρ(0) into (25) and integrate again to get ρ(1). The
process is repeated for ρ(2). The resulting terms of greatest
significance are:

ρ
(0)

 =  –kg,                               (26a)

ρ
(1)

 = ρ
(0)

 + αk ∫∫g + k2δ + 10
3 αk3 ∫∫ g3,          (26b)

ρ
(2)

= ρ
(1)

– α2k ∫∫∫∫g – k3∫∫hδ – 2αk3∫∫gδ.        (26c)

To complete the approximate solution of the K-V
equations, ρ(z) from Eq. (26) is put in the matching
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〈 f 〉 ≡ (1/2L)∫o

2L
f(z)dz,     (4)

{f} ≡ f – 〈f〉 .                   (5)

For even ψ(z ) ∋ 〈ψ〉 = 0:

∫ψ ≡ ∫0

z
ψ(z')dz' and    (6)

∫∫ψ ≡{∫0

z
dz'∫0

z'
ψ(z")dz"}. (7)

k ≡ Kmax,                          (8)

h(z) ≡ K(z)/k,                    (9)

g ≡ ∫∫ h, (10)

δ(z) ≡ ∫∫{hg},          (11)

A ≡ 〈a(z)〉,                (12)

ρ(z) ≡  (a(z)–A)/A,    (13)

ρb(z) ≡ (b(z)–A)/A,    (14)

α ≡ 3∈2

A4

, β ≡ αL2

π2 ,   (15)

q ≡   Q/A2,      (16)

Keff ≡ k2〈[∫h]2〉,          (17)

Φ ≡   3k2〈g2〉,            (18)

ρm ≡   h1kL2/π2.      (19)

Table 1: Definitions to be used in this paper
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K†
eff  –

∈ΙΙ
2


AII

4  –
Q


AII

2   =   0.                     (32)

Eq. (32) can be solved for A
II
 or Q

II
 in the same way as

for the third order, giving useful approximations when K(z)
and ∈ produce σ0 and σ less than about 80°.

First Order:  The three terms of lowest order produce
what is called the first-order matching equation in this
paper (Ref. [7] used another terminology). This is the
classic smooth approximation. These terms give k2〈[∫h]2〉 =
α/3+q, or, using the definitions (15), (16), and (17)

Keff  –
∈2


AI

4  –
Q

AI

2   =   0.                       (33)

First, second, and third-order results for A, from (33),
(32) and (30), are plotted in Fig. 1a. The smooth
approximation is relatively inaccurate except near the point
where its error curve crosses the 0 % line.

MAXIMUM RADIUS

Knowing the matched mean radius A, one can complete
the solution for the envelope a(z) = A[1+ρ(z)] using ρ(z)
from Eq. (26); b(z) can be found by changing the sign of
the terms that contain odd powers of k.

Some terms of Eq. (26) can be written in exact form [8]
for models such as FODO, but Fourier expansion is more
useful in general:

h(z)  = h1 [ cos πz
L

+ 1–
3

c3 cos 3πz
L

 + 1–
5
c5 cos 5πz

L
 …] .  (34)

Values (usually of order unity) of h1 and cn for both FODO
and smooth profiles are given in Ref. [8]. With the
definition

βI ≡  3 L2

π2

∈2


AI

4 (35)

we have

     aIII
max  = AIII[1+ρm(1+ 1

27
c3+ 1

125
c5) + 1–

8
ρm

2(1+ 25
54

c3)

 + βI ρm(1+ 5–
2

ρm
2+βI ) ] (36)

equation (24). From Eq. (26) we discarded items, such as
2αk2∫∫g2, that would give terms in (24) higher than third
power in the parameters k2, α, and q. A miniscule term,
qk2∫∫δ(z), in ρ(0) is also omitted.

The order of a term in the matching equation is reckoned
by counting the number of factors k2, α, and q. (These
would become small parameters in a non-dimensional
formalism [8]. Here, we prefer to retain physical units for
quantities such as the axial coordinate z.)

Third Order:  Inserting Eq. (26) into Eq. (24) yields
seven terms [8] through third order. Some terms combine,
with result

K†
eff  –

∈III
2


AIII

4  –
Q


AIII

2   =  0,                    (27)

where

K†
eff ≡ 〈[∫K(z)]2〉[1 +

1
24

Φ (1 +
20
27

c3)]; (28)

∈III
2 ≡ ∈2[1 + Φ(1 + 1–

2
Φ + 3βI )].             (29)

Here c3 is of order unity [8]. Roman-numeral subscripts on
A and ∈ signify the order of approximation—third order in
this case. The subscript on β~A-4 indicates that A

I
 [Eq.

(33)] is used to approximate A. The matching equation (27)
is in the standard form of the smooth approximation, Eq.
(33), and can be solved to find the third-order A:

A
III

2  =  (Q/2K†
eff) + [(Q/2K†

eff )2 + ∈III
2/K†

eff]1/2.    (30)

If the input quantity is the mean radius Ainp, then Eq. (27)
gives the allowable Q to third order,

QIII   =   Ainp
2 K†

eff – ∈III
2/Ainp

2 .

Second Order: There are two second-order terms. One
yields the correction to Keff seen in Eq. (28). The other
term is αk2〈g2〉, or, using definition (18), α

3 Φ. We define

∈ΙΙ
2 ≡ ∈2(1 + Φ) , (31)

and get

Figure 1: Accuracy of: (a) mean radius from Eqs. (30), (32), (33) and (b) maximum radius from Eqs. (36), (37), (38). Input
quantities are Q, ∈, and quad voltage VQ (~ K). Dimensions are in Ref. [8]. VQ , fixed at 20 kV, gives phase advance σ

0
 =

83.37°; ∈ , Q are varied so that depressed tune σ ranges between 0° and 76.5°; exact σ
0
 and σ are obtained numerically.
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The result is

σ0 III
  =  2L(K†

eff)1/2[1 + 1–
2

Φ + 7–
8

Φ2 ]. (43)

This equation is used to calculate σ0 as a function of the
strength of the quadrupole field gradient. Figure 2b shows
its accuracy and also illustrates the second-order case

σ0 II
  =  2L(K†

eff)1/2[1 + 1–
2

Φ ] (44)

and the smooth approximation,

   σ0 I
 =  2L(Keff)1/2

. (45)
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using results from Ref [8]. The accuracy of Eq. (36) is
shown in Fig. 1b, along with that of the truncations

aII
max  = AII[1+ρm(1+ 1

27
c3+ 1

125
c5) + βI ρm ] (37)

and (the smooth approximation)

aI
max  = AI[1+ρm]. (38)

PHASE ADVANCES

From the well-known phase-amplitude result [9], the
phase advance per quadrupole cell of length 2L is

σ   = ∈ ∫o
2L dz—

a2   = 2L∈〈a–2〉 .

We approximate a(z) by AIII[1+ρ(z)] with AIII from Eq.
(30) and ρ(z) to third order from Eq. (26). Subscripts are
omitted for brevity. Expanding a–2 and taking the average
gives

σ  =  2L
∈


AIII

2 [1 + 3〈ρ2〉 – 4〈ρ3〉 + 5〈ρ4〉  – ...].  (39)

(The 2ρ term has zero average by definition.) Ref. [8]
shows that to third-order accuracy 

σIII  =  2L
∈


AIII

2 [1 + Φ(1 +  3–
4

Φ +2βI )].          (40)

Errors with respect to exact values from simulations are
shown in Fig. 2a. Useful accuracy is retained after dropping
two terms and using A

II
 from Eq. (32):

σII  =  2L
∈


AII

2 ( 1 + Φ ).                       (41)

Figure 2a shows large errors for the first-order result
(smooth approximation):

σI   =  2L
∈


AI

2 .                            (42)

The undepressed σ0 is found by setting Q = 0 in Eq. (27),
then eliminating ∈ from Eq. (40). Details are in Ref. [8].

Figure 2: (a) Accuracy of depressed tune σ from Eqs. (40), (41), and (42).    VQ is fixed at 20 kV as in Fig. 1. 
(b) Accuracy of phase advance σ0 from Eqs. (43), (44), and (45). VQ ranges from 5 kV to about 22 kV.
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