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Abstract 
Dielectric photonic band gap (PBG) structures have 

many promising applications in laser acceleration. For 
these applications, accurate determination of fundamental 
and high order band gaps is critical. We present the results 
of our recent work on analytical calculations of two-
dimensional (2D) PBG structures in rectangular geometry. 
We compare the analytical results with computer 
simulation results from the MIT Photonic Band Gap 
Structure Simulator (PBGSS) code, and discuss the 
convergence of the computer simulation results to the 
analytical results. Using the accurate analytical results, we 
design a mode-selective 2D dielectric cylindrical PBG 
cavity with the first global band gap in the frequency 
range of 8.8812 THz to 9.2654 THz. In this frequency 
range, the TM01-like mode is shown to be well confined. 

INTRODUCTION 
PBG structures [1] have attracted much attention in 

recent years because of the large number of promising 
applications they provide. The distinctive feature of 
properly designed photonic crystals is the presence of 
global band gap, such that for a certain range of 
frequencies electromagnetic waves cannot propagate in 
the structure for all direction. This feature has found its 
applications in laser-driven accelerators [2] and 
microwave generation [3]. For example, metal PBG 
structures have been used to design selective rf circuit for 
microwave linear accelerator with successfully suppressed 
wakefields. Dielectric PBG structures have been proposed 
to be used in laser-driven accelerator schemes. 

Accurate determination of fundamental and high order 
band gaps is critical in pursuing these applications. 
Several numerical codes have been developed specifically 
for PBG structure calculations [4,5]. For these codes the 
benchmarking and error analysis is an important issue. 

In this paper, we consider a 2D dielectric PBG structure 
in rectangular geometry. For certain specific parameters 
of the structure an expression for the exact dispersion 
relation for TM modes is obtained, which allows us to 
perform the error analysis on certain numerical codes 
such as PBGSS. In general, our analytical results for the 
rectangular PBG structure may be used to benchmark 
other PBG codes that have been or will be developed to 
solve the dielectric PBG structures. 

ANALYTICAL DISPERSION RELATION 
FOR TM MODES IN A 2D 

RECTANGULAR DIELECTRIC PBG 
STRUCTURE 

We consider a 2D periodic PBG structure consisting of 
rectangular dielectric rods, infinite in the z -direction. The 
elementary cell for this PBG structure is shown in Fig.1. 
We are interested in the situation where the component of 
the wave vector along the rods zk  is equal to zero. In this 
situation, it is readily shown from Maxwell’s equations 
that the wave fields in the 2D dielectric media can be 
decomposed into two independent sets of modes, namely, 
transverse electric (TE) modes and transverse magnetic 
(TM) modes. The electric field in TE mode is 
perpendicular to the axis of the rods (i.e. the z axis), 
whereas in a TM mode the magnetic field is perpendicular 
to the axis of the rods. All the field components in the TE 
(TM) mode can be expressed in terms of the longitudinal 
magnetic (electric) field, which is further denoted by Ψ . 
The longitudinal field component in each rod satisfies the 
following Helmholtz equation 

 

Figure 1. Schematics of a 2D rectangular PBG structure 
representing (a) elementary cell of the structure and (b) 
reciprocal lattice and a Brillouin zone with an irreducible 
Brillouin zone in the shaded region. 
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where index i  refers to the i - type of the dielectric rod 
and 222 / ck ii ωε=⊥ . We use the notation ( )⊥Ψ xi  instead 
of ( )ω,⊥Ψ xi  assuming that the frequency ω  is fixed. We 
specialize to the TM mode in the reminder of the paper. 

Applying the boundary conditions on the interface of 
the dielectric rods and the periodic boundary conditions 
on the boundaries of the elementary cell, we derive 
analytical dispersion relation for a special case when the 
dielectric constants of the rods satisfy the algebraic 
condition 

4231 εεεε +=+ .                          (2) 

In this case, we can obtain the following analytical 
dispersion relation for the TM modes with 0=zk : 
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where the functions ( )ω,11 yxx kkk =  and ( )ω,22 yxx kkk =  
are implicitly defined by the relations 
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There are a number of useful applications of the 
analytical dispersion relation. First, it allows for 
benchmarking the existing numerical codes for PBG 
calculations. Second, it enables us to perform a rigorous 
error analysis and establish error tolerance in a PBG 
simulation code. Third, it allows for an accurate 
determination of global band gaps, especially very narrow 
ones which are required in order to design an oversized 
PBG cavity or waveguide with a single transverse mode. 
Fourth, it allows us to study the attenuation of the mode 
which has a frequency in the global band gap and 
therefore it is trapped in the defect of the structure. 

COMPARISON BETWEEN THEORY AND 
NUMERICAL SIMULATIONS 

In this section, we present results of the comparison 
between the analytical calculation and the numerical 
calculations using our PPGSS code [4] and the MIT 
Photonic-Bands (MPB) package [5]. Our PBGSS code 
uses the real-space finite-difference method [4], whereas 
the MPB package uses preconditioned conjugate-gradient 
minimization of the block Rayleigh quotient in a plane 
wave basis [5]. 
Results of the calculations of the first six bands are 
presented on Fig. 2 for a PBG structure with the following 
parameters: 7.0/0 =aa , 7.0/0 =bb , 0.1/ =ba , 

0.11 =ε , 0.542 == εε  and 0.93 =ε . In the PBGSS 
code, the fundamental unit cell is covered by square mesh 
with ( ) ( )1212 +×+ NN  mesh points. In our calculation, 
we use the value of 8=N . For the MPB code, we use the 
value of resolution (grid points per lattice constant a ) 
equal to 32. We can see that the numerical simulations 
agree well with the analytical solution. 
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Figure 2. Plots of the normalized frequency ca πω 2/  for 
the first six bands versus the wave vector ⊥k for TM 
modes as ⊥k  varies from Γ to X , X  to M , and M to  
Γ  [see Fig. 1(b)]. Solid curves are analytical results; 
triangles, PBGSS simulation results; dots, MPB code 
simulation results. 

As discussed previously, the analytical dispersion 
relation can be used to test different numerical codes. To 
this end, we have started the error analysis on the PBGSS 
code. The results are shown in Fig. 3 for the M point in 
the irreducible Brillouin zone as the function of N . As 
one can notice the error is oscillating as N  increases. The 
absolute value of the maximum error is found to scale 
approximately N/1∝ . We plan to continue working on 
the error analysis of PBGSS code and to optimize the 
code in order to improve accuracy. 
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Figure 3. Value of the error in normalized frequency 
ca πω 2/  as a function of N  for first TM mode at M point. 

Dashed line represents the fit for absolute value of the 
maximum error found. 

ATTENUATION OF THE TM MODE WITH 
FREQUENCY IN A GLOBAL BAND GAP 
We make use of Eq. (3) to calculate the attenuation of 

the evanescent wave in the band gap as a function of 
angle of the wave vector with respect to X−Γ  direction 
in the irreducible Brillouin zone in Fig. 1(b). The results 
are shown in Fig. 4. The wave attenuates differently in 
different directions. 

From Fig. 4, we estimate the quality factor of a 
resonator formed by removing part of the PBG structure. 
For a PBG resonator with a hollow circular cross section 
with the inner diameter D  and the PBG wall thickness 
L , the quality factor of a TM mode with wavelength λ  in 
the global band gap scales approximately as 

( ) LkeDQ ><∝ Im2/ λ , where >⋅⋅⋅<  is the averaging over 
all possible directions of propagation. 
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Figure 4. Normalized imaginary part of ⊥k for TM modes 
with frequency in the global band gap as a function of its 
angle with respect to X−Γ  direction in the irreducible 
Brillouin zone. 

We have investigated the confinement of the TM01-like 
mode in a 2D dielectric cylindrical PGB resonator using 

High Frequency Structure Simulator (HFSS). The 
resonator was designed to have inner diameter of 

5.33=D µm and a wall thickness of 25.88=L  µm. The 
parameters of the PGB structure are chosen to be 

,10 mba µ== ,700 mba µ== 0.11 =ε , 0.542 == εε and 
0.93 =ε . The first band gap for this structure is located 

between 8.8812 THz and 9.2654 THz. For this resonator a 
TM01-like mode is found in the band gap at the frequency 
of 9.0712 THz. The distribution of the electric field 
magnitude for this mode is shown on Fig. 5. The mode 
was found to be well confined within a defect. 

 

 
Figure 5. Distribution of the (relative) electric field 
magnitude for a TM01-like mode in a dielectric cylindrical 
PBG resonator. 

CONCLUSIONS 
We found an exact dispersion relation for the TM mode 

in rectangular 2D dielectric PBG structure with 0=zk  
when the dielectric constants of the rods satisfy a certain 
algebraic condition. We compared the results of our 
analytical calculations with the results of numerical 
simulations using PBGSS code and MPB code. The 
results of numerical calculations were found to be in good 
agreement with analytical results. We have also estimated 
the quality factor of the resonator formed by removing 
part of the PBG structure in long-wave approximation. 
We performed the error analysis on the PBGSS code. 
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