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Abstract

The reduction of transverse and longitudinal cooling re-
quirements, the increased number of beam circulations, and
the reduced cost, as compared to RLAs, are arguments to
adopt the linear-field FFAG as the acceleration stage of a
Neutrino Factory[1]. Because of the large range of cen-
tral momenta,±50% δp/p, and negative uncorrected chro-
maticity, the non-scaling FFAG will cross many integer and
half-integer betatron resonances during the 10-20 turns ac-
celeration. There is the expectation that if driving terms
are small enough and crossing is fast enough, then there is
insufficient time for the betatron amplitudes to grow. The
conventional theory of resonance crossing[2, 3, 4] is
applied to slow acceleration, over 100s or 1000s of turns.
This paper examines whether the rapid parameter changes
encountered in the multi-GeV FFAGs, or few-MeV elec-
tron model, are compatible with simple theory.

INTRODUCTION

This paper is in two parts. First, an exact treatment[5] of
the simple problem of a time-varying oscillator driven by
a sinusoidal forcing that instantaneously matches its nat-
ural frequency. Second, an approximate treatment[6] of a
complicated ring-type accelerator with alternating-gradient
focusing, and magnet field errors. The former case sheds
light on the latter; in particular for the regime when the ap-
proximations break down - namely large slew rate and/or
the vicinity of zero natural frequency. In both cases we
find changes to the invariant of motion.

Transfer Matrices, etc

Suppose that F (t) and G(t) are known independent so-
lutions of a homogeneous second order differential equa-
tion, Dx = 0. The general solution is given x(t) =
T(t, t0)x(t0) where the matrix and vectors are

x =
[

x
ẋ

]
, M =

[
F G

Ḟ Ġ

]
, T =

[
C S

Ċ Ṡ

]
. (1)

The transfer matrix T = M(t)M−1(t0) and M−1 is the
matrix inverse of M. The transformation is area preserving
when the Wronskian F Ġ−GḞ is unity.

Invariant of Motion

When D = d2/dt2 + p2(t), the trajectory is written in
quasi-harmonic form:

x =
√

2Jβ(t) cos[ψ(t)] (2)

ẋ = −
√

2J/β[sinψ + α cosψ] ; (3)
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α = −β̇/2 , βγ = 1 + α2 , ψ̇ = 1/β , α̇+γ−p2β = 0 .
(4)

The single-particle invariant defines an ellipse of area πε:

2J = γx2 + 2αxẋ + β(ẋ)2 = ε . (5)

Transforming the initial vector x(t0) according to x(t) =
Tx(t0), and transforming α, β, γ according to (4), both to
the location t, and forming the quantity (5) we obtain the
anticipated invariant 2J = emittance. We may ask what is
the result of peturbing the ellipse by a displacement of the
centroid. Let α0, β0, γ0 be initial values at t = t0. Consider
the vector: x(t0)+(A, B). Performing the same operations
we obtain 2J = ε + ∆J where:

∆J = γ0A
2 + 2α0AB + β0B

2 . (6)

Driven oscillator

The next step is to consider an inhomogeneous equa-
tion Dx = f(t) where the forcing, f , is applied start-
ing at τ . The general solution may be derived exactly:
x(t) = T[x(t0) + (A, B)]. The change of the invariant
is given by (6). Here:

A = −
∫ t

τ
S(s)f(s)ds , B = +

∫ t

τ
C(s)f(s)ds . (7)

LINEAR OSCILLATOR

We consider the driven linear oscillator:

ẍ + (a + bt)2x = c2 cos(at) . (8)

We introduce the dimensionless coordinate s = at, in
terms of which the O.D.E. becomes

x′′ + (1 + s/k)2 = (c/a)2 cos(s)Θ(s− σ) . (9)

The dimensionless parameter k ≡ a2/b characterises the
slew rate. Θ = 1 for s ≥ σ, else zero.

The transfer matrix T(s, 0) = T̃(s + k, k) where T̃ is
the transfer matrix for the simpler O.D.E. x ′′+(s/k)2 = 0
that results when the origin is shifted to s = −k. We use
the subscripts ± to denote ±t ≥ 0 solutions. we form the
matrices M± and their inverses from F±, G±; and from
these T̃(t, k)± = M±(t)M+(k); and hence T±(s, 0) =
T̃±(s + k, k). The free oscillations are x(s ≥ −k) =
T+(s, 0)x(s=0) and x(s≤−k) = T−(s, 0)x(s=0).

It is natural to take the beam ellipse to be upright at s =
0; this implies α0 = 0 and β0 = γ0 = 1. The change in the
invariant is simply ∆J = (c/a)2[A2 + B2] where

A = −
∫ s

σ
cos t S±dt , B = +

∫ s

σ
cos t C±dt , (10)

and C±, S± are the elements of T̃±(t + k, k) taken as ap-
propriate to whether t < −k. Substituting t → t

√
k, the

change of the invariant becomes (c/a)4k[A2 + B2] where
A,B are weakly varying functions of k.
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WKBJ solution The second approximation:

F±=cos(t2/2k)
√
±k/t , G±=± sin(t2/2k)

√
±k/t ,

(11)
valid for ±t > 0. The solution is subject to the condition
k � 1. In the limit of k � 1, [A,B]→ (

√
π/2)[S, C],

Fresnel integrals of argument s/
√

π.

Exact Solution Valid for ±t ≥ 0. Let τ ≡ t2/(2k).

F±=
√

π

23/4

√
±t J−1/4(τ) , G±=±

√
π

23/4

√
±t J+1/4(τ) ,

(12)Here J±1/4 are Bessel functions of fractional order.

Single-sided integration

Assume a, b, k > 0. All integrals may be computed nu-
merically in the forward direction from σ ≥ 0 to s > 0.
The integrals converge, quickly, to aymptotic values with
residual oscillations. Figures 1,2,3 show how the integrals
vary as the upper limit of integration s increases. The Fres-
nel integrals estimate the asymptotic value of A2 + B2

to be π/8 ≈ 0.3927, independent of k Integration range
s = [0, 4

√
πk] in the reduced variable; and t = s/a and

k = a2/b. Hence the time range, t = [0, 4
√

π/b], for
asymptotic values to establish gets progressively longer as
slew rate b is reduced. Throughout the plots k = 20, andA
and B are shown red and blue, respectively.
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Figure 3: Fresnel C,S Figure 4: P.I.s versus k

Figure 4 compares the limits of the particular integrals
(P.I.s) for single- and double-sided integration for the
Bessel and WKBJ kernels as a function of k.

Double-sided integration

When the lower limit σ is extended backward in time,
toward σ → −k and beyond, the integrals vary wildly. The
effect is shown in figures 5,6. If the range of integration
extends from t � −a/b to t > 4

√
π/b, the P.I. computed

with the WKBJ kernel bears little relationship, except or-
der of magnitude, to the value found with the Bessel kernel.
This is because s = −k is territory where the WKBJ solu-
tions become undefined and possibly infinite. Figures 7,8
show C±, S± across s = −k. The combination of a sin-
gularity and oscillatory terms is very challenging to any

algorithm for numerical integration, and that is the source
of the high frequency ripple in Fig. 6.
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Figure 8: WKBJ C±, S±

BETATRON RESONANCE CROSSING

We wish to estimate the change in the transverse invari-
ant. Let ∂n

x ≡ ∂n/∂xn. The ring hamiltonian[7] is H =

H0 +
1

B0ρ

∞∑
n=1

1
n!

∂(n−1)
x Bz(s)xn , H0 =

p2
x

2
+ k

x2

2
,

(13)
H0 gives the unperturbed motion. B0ρk(s) = ∂Bz/∂x.
The terms in the summation over n are small perturbations
and will be considered singly. We make canonical transfor-
mations to new coordinates ψ1 = ψ − δψ and J .

δψ = [
∫ s

0 du/β(u) − (Q/R)s] , ψ′1 = Q/R . (14)

The ring tune Q =
∫ 2πR

0 ds/(β2π) where R is the average
machine radius and 2πR ≡ C is its circumference. Let us
suppose the lattice tune Q varies linearly: Q(s) = Q0 +
Q′s in which case ψ1 = [Q0s + Q′s2/2]/R. This phase
variation is substituted in the free-oscillation.

Perturbation

We now add the perturbation, writing this in terms of
(ψ1, J). The change of the invariant is essentially the par-
ticular integral for the system when it is driven.

1

J
n/2
1

dJ1

ds
=

2n/2

(n− 1)!

β(s)n/2

B0ρ

[
∂(n−1)

x Bz(s)
]
cos(n−1) ψ sin ψ .

(15)
J1 may be obtained by an integration over the circumfer-

ential coordinate s starting with the initial values at loca-
tion s = σ. The only completely legitimate procedure is
to perform the integration directly. However, it is custom-
ary to make the assumption of a resonance condition, and
look for dominant contibutions. The lattice terms β, Bz are
assumed to be locally periodic functions on the range L,
and are expanded as a Fourier series over m. Most terms in
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the integrand are rapidly varying, but we single out those
having function argument

i2πs[(m/L) − n(Q0/C)] − in(Q′/R)(s2/2) , (16)

as slowly varying. We identify the resonance condition
m = nQ0× (L/C) that must be satisfied by integers n, m.
For brevity, let η ≡ (1− n/2) and κs2 ≡ nQ′s2/(2R).
The change of invariant is:∫ J1(σ+L)

J1(σ)

dJ

Jn/2
=

1
η
[Jη

1 (L + σ)− Jη
1 (σ)] . (17)

Let the Fourier component 2n/2(n−1)!An,m(L) ≡

1
B0ρ

∫ σ+L

σ

β(s)n/2[∂(n−1)
x Bz(s)]e[inδψ(s)+im2πs/L]ds .

(18)

Ring versus beam line

There are two cases to consider: the linac or beamline in
which β, Bz never repeat themselves; and the ring in which
β, Bz , δψ have minimal periodicity C. In the linac case, the
resonant m slides in value as L is extended, yielding:∫ J(σ+L)

J(σ)

dJ

Jn/2
=

∫ σ+L

σ

	[−iAn,m(L)(L) exp(iκs2)]ds .

(19)
In the ring case we consider m = m0 to be fixed, and
consider the growth on consecutive turns:∫ J(σ+qC)

J(σ)

dJ

Jn/2
=

∫ σ+qC

σ

	[−iAn,m0(C) exp(iκs2)]ds ,

(20)
with integer q the turn index.

Notice that the tune is equal to Q0 at s = 0, and the
lower limit of integration being σ ≤ 0 allows us to con-
sider a crossing of the resonance. The integrals appearing
in (19,20) may be expressed in terms of Fresnel integrals.

Problems

The particular integral for driven motion was constructed
from free oscillations. The problem is that (3) are not the
true oscillations when the betatron tune varies. This defect
enabled the P.I. to be approximated by Fresnel integrals,
and will founder under the same conditions that invalidate
the WKBJ approximation, namely the analogues of s ≈
−k and/or k < 1.

Conditions on resonance crossing Let Nc, Nt be the
number of cells and turns, respectively. Let l0 be the cell
length, then Ncl0 = 2πR. Let νc be the cell tune and ∆ν =
(νext

c − νinj
c ) be the difference of cell tunes between injec-

tion and extraction. The basic lattice tune is Q0 = Nc× νc

and the slew rate is Q′ ≡ dQ/ds = ∆ν/(Ntl0). Q′ < 0,
Q=0 after beam leaves the ring. Rôles of σ and σ + L are
reversed. The analogue of a is the rate of phase advance ψ ′

and hence the WKBJ approximation is valid for

(Q/R)2 � |Q′/R| , or 2πNcNt|ν2
c /∆ν| � 1 . (21)

The WKBJ approximation is valid provided the upper limit
of integration σ satisfies

σ � Q0/|Q′| = −NcNtl0|νc/∆ν| . (22)

A further issue is how long must the integration be contin-
ued before the integral is replaced by its asymptotic value.
The limiting values are obtained when the range of integra-
tion (s = L) obeys

L ≥ 4
√

π

2κ
= 4

√
πR

nQ′ = 4l0

√
NcNt

2n∆ν
= C

√
8Nt

Ncn∆ν
.

(23)
Rapid acceleration

The linear-field FFAG accelerator has natural chromatic-
ity, and a range of central momenta spanning δp/p =
±50 %; this leads to a large variation of betatron. When
used for muons, which decay rapidly, the FFAG must ac-
celerate the beam in a comparably small time span, and so
acceleration is rapid: some 10-20 turns in a machine with
roughly 100 cells is envisioned. During this time many res-
onances will be crossed. It is natural to wonder whether the
fomulae for change of invariant (or emittance) may be used
in such a regime of rapid resonance crossing. The formulae
(21-23) allow us to explore this question.

Slew rate For the FFAG at injection, the tune range
and cell tune are comparable (∆ν 
 −ν inj

c ) and so the
number of cell turns must satisfy the inequality (2πνc)Nc×
Nt � 1. For the FFAG at extraction, the cell tune is a small
fraction, f , of the tune range and so the number of cell
turns must satisfy 2π|∆ν|f 2Nc × Nt � 1 where (νext

c =
−f∆ν). Given that ν inj

c ≈ 0.4, νext
c ≈ 0.1, Nc � 1 and

Nt ≥ 1, both conditions are satisfied in practical cases.

Range of integration Given that Nt ≥ 10, and ∆ν 

−νc, the implication of (22) is that we can imagine the end
of crossing to occur no later than one turn after being pre-
cisely on resonance. Of course, if the particular integral
is based on the Bessel function kernel (12), then no such
limitation exists.

Equation (23) gives the minimum integration range for
the asymptotic value to be established. For values Nc =
100, Nt =10, ∆ν =0.3 and n=1, 2, 3, the range is roughly
C. For those resonances involving only a few cells, this
is not satisfied except for rather large n (high-order multi-
poles). For resonances which we believe to involve only a
few cells, we must evaluate C(L

√
2κ/π), etc.
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