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Abstract

The basic optics design scope in lepton rings is to match
the sections in either side of the bending magnets in order
to minimise the equilibrium emittance. A further impor-
tant emittance reduction can be achieved by incorporating
dipoles for which the deflecting field varies along the elec-
tron beam path in the magnet. The figure of merit for such
lattices when used in a synchrotron light source is the min-
imisation of the so-called effective emittance. The effec-
tive emittance is computed in the middle of the undulator
straight section as the product of the rms size and diver-
gence and therefore includes contributions from the beta-
tron emittance and from the electron energy spread. In this
paper, analytical formulas are obtained for the minimum
betatron and effective emittance in arbitrary dipole fields
and the associated optics functions at the dipole entrance.
Examples are given for specific dipole field functions and
their properties with respect to the effective emittance min-
imisation. Finally, the effective emittance is parameterised
with respect to standard cell optics properties.

EFFECTIVE EMITTANCE IN
ARBITRARY BENDING FIELDS

In a ring without vertical bending, the synchrotron radi-
ation damping is balanced out by the quantum excitation in
the horizontal plane only, resulting in an equilibrium beta-
tron emittance

εx =
Cqγ

2

Jx

∮ Hx(s)
|ρx|3 ds

∮
1
ρ2

x
ds

. (1)

When dispersion is present in the straight section, the figure
of merit for increasing the brilliance at the insertion device
(ID) is the effective emittance [1]

εxeff
(sID) =

√
ε2x +Hx(sID)εxσ2

δ , (2)

where Hx(s) = βxη′2x + 2αxηxη′x + γxη2
x is a func-

tion of the optics around the ring, which is invariant out-
side the bending magnets (neglecting the effect of the
IDs). The equilibrium energy spread is defined as σ2

δ =
Cqγ2

Js

H 1
|ρx|3

ds
H 1

ρ2
x

ds
. Assuming that the effect of focusing in the

bending magnet is small, the longitudinal damping parti-
tion number is Js ≈ 2Jx.

In isomagnetic lattices, the betatron emittance is pro-

portional to
H

Hx(s)ds
|ρx| which yields an effective emittance

proportional to the third power of the bending angle θ3 ∝
N−3, i.e. it decreases rapidly with the number of dipoles
N installed in the ring. An interesting idea [2, 3] would

be to vary the bending field along the dipole in order to
further reduce the emittance by matching the bending field
variation to the variation of the functionH.

In order to obtain general formulas for the reduction of
the emittance in arbitrary dipole fields, we consider the
transport matrix of a generalized dipole magnet with vary-
ing bending field, in thin lens approximation and ignoring
edge focusing

Mbend =




1 s θ̃(s)
0 1 θ(s)
0 0 1



 , (3)

where θ(s) is the bending angle and θ̃(s) its integral along
the magnet:

θ(s) =
∫ s

0

ds

ρ(s)
, θ̃(s) =

∫ s

0

∫ s

0

d2s

ρ(s)
. (4)

Having as initial values β0, α0, γ0, η0, and η′0, at the bend-
ing magnet entrance (ID side), the horizontal optics func-
tions evolve as

β(s) = β0 − 2sα0 + s2γ0 , α(s) = α0 − sγ0 ,

η(s) = η0 + sη′0 + θ̃(s) , η′(s) = η′0 + θ(s)
(5)

and γ(s) = γ0, along the generalised bending magnet. Re-
placing the optics function evolution in H and integrating
around the ring, the following expression for the betatron
equilibrium emittance is obtained

εx =
Cqγ

2

Jx

∮
1
ρ2

x
ds

[

β0(A3 + 2A2η0
′ + A1η0

′2)

+2α0(A5 + A4η0
′ + η0(A2 + A1η0

′))

+γ0(A6 + 2A4η0 + A1η0
2)

]
. (6)

The betatron emittance depends on six integrals involving
the variable bending radius ρ(s):

A1 =
∮

1
|ρ3|ds, A2 =

∮
θ

|ρ3|ds, A3 =
∮ −θ2

|ρ3| ds,

A4 =
∮

θ̃ − sθ

|ρ3| ds, A5 =
∮

(θ̃ − sθ)2

|ρ3| ds,

A6 = −
∮

θ(θ̃ − sθ)
|ρ3| ds .

(7)

Using Js = 2Jx and setting C = Cqγ2

2Jx

H 1
ρ2

x
ds

, the effective

emittance at the ID is

ε2xeff
= εx(2εx + CA1Hx(sID)) , (8)
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i.e., it depends on the initial optics functions, the integrals
A1−6 and the value of the invariant H at the ID, for which
Hx(sID) = Hx(s0). Imposing that the partial derivatives
of (8) vanish with respect to the initial optics functions in
order to get the effective emittance minimum, the following
expressions are obtained

η0 =
A4

A2
η′0 , γ0 =

A2(A3 + A2η
′
0)β0

2A2A6 + A2
4η

′
0

,

α0 = −A2(A5 + A4 η′0)β0

2A2A6 + A2
4η

′
0

,

(9)

involving the optics functions at the entrance of the bend
and the integrals A1−6. Eliminating the other optics func-
tions, it remains a third order polynomial equation of η′0,
whose real solution can be replaced back to (9) in order to
get the optics functions at the entrance of the bend and the
value of the minimum effective emittance (see Appendix).

Minimum betatron emittance: In damping rings of
e+e− colliders, it is essential to minimise the betatron emit-
tance, through minimum emittance cells [4]. In this case in
order to obtain an analytic expression for generalised bend-
ings one has to find the initial optics functions minimising
expression (6). Setting A = (2A2A4−A1A5)A5−A2

2A6+
A3(A1A6 −A2

4), the optics functions giving the minimum
betatron emittance εx;min = 2C

√
A1A

A1
are [2]:

η0 = −A4

A1
, β0 =

−A2
4 + A1A6√

A1A
,

η′0 = −A2

A1
, α0 =

A2A4 −A1A5√
A1A

.

(10)

Minimum emittance in an achromat: Imposing
achromatic conditions η0 = η′0 = 0 at the dipole entrance,
the minimum betatron emittance is equal to the effective
one εx;min = 2C

√
A3A6 −A2

5 and is reached for the sim-
ple optics conditions

β0 =
A6√

A3A6 −A2
5

, α0 =
A5√

A3A6 −A2
5

. (11)

Constant bending radius: For a uniform bending
magnet, the following expression for the effective emit-
tance εx;effmin

= 0.03339Cq
γ2θ3

Jx
is obtained [1], which

is a factor 1.55 higher than the minimum achievable beta-
tron emittance for uniform bends εxmin

= 1
12
√

15
Cq

γ2θ3

Jx
.

The question a lattice designer often asks is by how
much the emittance grows when the optics functions are
detuned from their optimal values [4]. Using Eq. (8), the
expression of the minimum emittance and the optimal op-
tics functions for reaching it, a parametric equation can be
formed. It is a 4th order polynomial involving the optics
functions normalised by their optimal values and parame-
terised by the ratio of the effective emittance reached with
respect to its absolute minimum. By keeping α, η′ to the
optimal values and letting β, η to vary, curves of constant
emittance can be plotted. In the case of the betatron emit-
tance, these curves are ellipses [4]. In the case of the ef-
fective emittance, these are distorted ellipses, as shown in

Figure 1: Constant emittance curves when the beta and dis-
persion functions are detuned from the optimal values.

Fig. 1, in the case of the constant field dipole of the ESRF
type. This plot shows that in order to have less than a fac-
tor of 1.2 of effective emittance increase, the initial β and
η functions have to vary by less than 20% with respect to
their optimal values. Similar arguments can be concluded
for all optics functions.

NUMERICAL EXAMPLE

Following [3], a bending radius is considered evolving
as ρx(s) = (1 + as)m/b. Fixing the total bending angle

θ = b(1−(1+a ld)1−m

a(m−1) imposes that b = 2a(m−1)π
N(1+(1+a ld)1−m ,

where N is the number of dipole in the ring. For the nu-
merical evaluation, the ring layout of the ESRF storage ring
is used, with 32 cells (64 dipoles) in a ring circumference
of 844.4 m with a beam energy of 6 GeV. We employed
the length of the actual ESRF dipole of around 2.33 m and
an effective bending radius of 22.89 m, giving an effective
dipole field of 0.85 T. In Fig. 2, we plot the minimum effec-
tive emittance based on this bending radius profile, versus
the degree of the polynomial m and for different values of
the field parameter a. The effective emittance drops radi-
cally to below 0.5 nm when increasing a and for moderate
values of m. For large values of m, it seems to saturate
to around 0.6 nm, for all a. The emittance minimum in
the case of an achromatic cell is between 1.4 and 2 times
larger than the one of the ring with dispersive straight sec-
tions (Fig. 2b). For large values of m, it converges towards
a ratio of 1.6.
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Figure 2: Minimum effective emittance (left) and its ra-
tio with respect to the minimum effective emittance in the
achromatic case (right) as a function of the field parameter
m for different values of a.

The effective emittance shows a minimum for certain
values of the field parameters, which becomes more pro-
nounced for larger values of a. For each value of a, the
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corresponding m can be numerically tracked, where the ef-
fective emittance presents a global minimum. In Fig. 3,
the global minimum values of the effective emittance ver-
sus the field parameters a and m is presented, including
their mutual dependence. The global minimum grows for
increasing values of a and decreasing values of m. Un-
fortunately, for this profile model, the corresponding maxi-
mum bending fields giving global effective emittance min-
ima, are above 6 T, which can not be produced with normal
conducting magnets (Fig. 3d). Indeed, if the field is not
constrained, one can reach a zero effective emittance theo-
retically, as a grows to infinity.
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Figure 3: Global minimum of the effective emittance (top)
versus the field parameters a (left) and m (right), their mu-
tual dependence (bottom left) and dependence of the global
minimum to the maximum bending field (bottom right).
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Figure 4: Dependence of the minimum effective emittance
in the field parameters a (left) and m (right) in the case of
a fixed maximum bending field of 1.8 T.

Therefore, it is interesting to constrain the maximum
bending field to normal conducting values. By fixing the
maximum dipole field, the values of the parameters a and
m are dependent on each other through equation B =

10
2.998

a
√

E2−E2
0(m−1)2π

N(1+(1+a ld)1−m(1+as)m . In Fig. 4,the minimum ef-
fective emittance is plotted versus the two field parameters
which are now linked by the previous relation in order to
keep the maximum field to 1.8 T. The minimum emittance
value drops as expected from 1.69 nm for m = 0 (constant
field) to below 1.1 nm. The drawback for using this field
profile is that, in order to diminish the effective emittance
below 1 nm, which is the target value for an ESRF lattice
upgrade [5], the order of the bending polynomial has to be
raised above m = 10 and the field parameter has to drop
below a = 0.1. In the case of the ESRF, a constant field
profile in three steps was preferred, whose length and field
values can be optimised numerically to give a minimum

effective emittance of 0.77 nm [5].
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Figure 5: Dependence of horizontal beta, alpha (top), dis-
persion function and its derivative (bottom) through the
bending magnet, on the bending parameter a for a maxi-
mum bending field of 1.8 T.

In Fig. 5, we plot the optics functions versus the field
parameter a, giving the minimum effective emittances of
Fig. 4. The absolute value of all optics function drops with
a, i.e. with the effective emittance. Note that the very small
values of the dispersion and its derivative indicate that by
imposing these optics at the beginning of the bend, a very
large phase advance has to be achieved with important im-
plications in the optics design and non-linear dynamics [5].

APPENDIX

Using (9), a third order polynomial depending only on
η′0 has to be solved: 3η′0

3 + 10T1η
′
0
2 + T 2

1 (6 − 5T2)η′0 −
4T 3

1 T2 = 0 with T1 = A2
A1

, T2 = A1(A
2
5−A3A6)

A3A2
4+A2(−2A4A5+A2A6)

T3 = A3A
2
4 +A2(−2A4A5 +A2A6). The optics functions

for the minimum effective emittance are:

β0 =
9A1A6T + A2

4(46 + (T − 10)T + 45T2)

3
p

A1T3T (46 + T (T − 10− 9T2) + 45T2

,

α0 =
−A1(9A5T + A4T1(46 + (T − 10)T + 45T2)

3
p

A1T3T (46 + T (T − 10− 9T2) + 45T2

,

η0 =
A4(T − 10 + 46+45T2

T
)

9A1
, η′

0 =
T1(T − 10 + 46+45T2

T
)

9
,

with T3 = A3A
2
4 + A2(A2A6 − 2A4A5) and T =

(9(−3(1+T2)(2+3T2)(126+125T2))1/2−190−189T2)
1
3 .

Then minimum effective emittance is

ε2xeff
=

C2T3P1(T, T2)P2(T, T2)
486A1T 3(46 + T (T − 9T2 − 10) + 45T2)

with P1(T, T2) = T 4−2T 3−6T 2(3T2−2)−2T (45T2 +
46) + (45T2 + 46)2 and P2(T, T2) = T 4 + 7T 3 −
6T 2(12T2 + 13) + 7T (45T2 + 46) + (45T2 + 46)2).
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