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Abstract

Reflection matrix elements of a grating play an impor-
tant role in the study of Smith-Purcell (SP) free-electron
lasers (FELs). Especially, the matrix element R00, which
couples the incident co-propagating evanescent wave to the
reflected co-propagating evanescent wave, is important for
evaluation of the gain of an SP-FEL system [1]. We present
a calculation of R00 for rectangular grating and study its
frequency dependence for a given phase velocity of inci-
dent wave. For the numerical calculation, we use the modal
expansion method and extend it to include waves having
slowly varying amplitude. The singularity ofR00 is studied
in some detail and we find that it is possible to get a simple
formula for the location of the singularity if we choose the
eigenmodes of the groove as a basis set as done by Andrews
et al. [2].

INTRODUCTION

Devices like Smith-Purcell (SP) free-electron lasers
(FELs) and surface wave accelerators are based on the
interaction of the electron beam with the co-propagating
evanescent wave supported by the grating. In the case of
SP-FELs, as shown by Toraldo de Francia [3], the incident
evanescent wave from the electron beam gets reflected at
the reflection grating to various spectral orders with an am-
plitude chacterized by the reflection matrixR. The matrix
element Rmn is defined as the ratio of the amplitude of
the mth-order reflected wave to the amplitude of the n th-
order incident wave when only nth-order is present in the
incident wave. The knowledge of the reflection matrix is
crucial to developing an understanding of these devices.

Evaluation of the reflection matrix elements of a grating
is an involved problem and has attracted considerable in-
terest for nearly one hundred years [4,5]. In the case of SP
radiation, one needs to evaluate the matrix elements for in-
cident evanescent wave. Matrix elements Rm0 were first
evaluated for reflected propagating waves by Van den berg
and the spontaneous SP spectrum was thus calculated [6].
For the case of stimulated emission in SP-FELs, it is more
relevant to study the matrix element R00 for the reflected
zeroth-order evanescent wave, which co-propagates with
the electron beam [1,7]. To the best of our knowledge, the
calculation of R00 has not been reported so far. In this
paper, we perform a calculation of R00 for a rectangular
grating, taking the slow variation in amplitude of the wave
into account, and present the results.
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BASIC THEORY

Figure 1: Schematic of a rectangular reflection grating. The
top surface of the grating is in the plane x = 0.

Figure 1 shows the schematic of a rectangular metallic
reflection grating having period λg , groove depth d, and
groove width w. Assuming translational invariance in y,
the EM field in the region x > 0 is composed of the in-
cident and reflected wave having the following Floquet-
Bloch expansion for the TM mode:

HI
y =

+∞∑

n=−∞
AI

ne(iαnz−ipnx−iωt), (1)

HR
y =

+∞∑

n=−∞
AR

n e(iαnz+ipnx−iωt). (2)

Here n is the spectral order, AR
n =

∑RnmAI
m, αn =

k/β − nkg − iµ, k = ω/c, kg = 2π/λg, pn = iΓn =√
k2 − α2

n, and the sign of the square root is chosen such
that [Re(pn)+ Im(pn)] ≥ 0, which is essentially the outgo-
ing wave condition [5]. Note that we have assumed a slow
variation in the amplitude of the type eµz for x = 0, where
µ is the complex growth rate. The phase velocity of the
zeroth order mode is β in units of the speed of light c.

The electromagnetic field inside the groove can be ex-
pressed as a superposition of cavity modes and by satisfy-
ing the boundary condition at the surface x = 0, we can
derive the expression forR and show that [5-7]

R = (I + Z)−1(I − Z), (3)

where I is the identity matrix and Z is the impedence ma-
trix given by

Zmn = − w

λg

1
Γm

∞∑

s=0

Qs tan(Qsw)
gs

(4)

× L+(pn; s)L−(pm; s).

Here, Qs = (k2 − q2
s)1/2

, qs = πs/w, g0 = 1, gs�=0 =
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1/2, and L+ and L− are given by

L+(pm; s) = e+iαmb 1
2

[
e+iθ− sin θ−

θ−
+ e+iθ+

sin θ+

θ+

]
,

where θ+ = (−wαm+πs)/2, and b = λg − w. The above
expression for R has the same form as given in Ref. [7],
and we have generalized it to take the slow variation of
amplitude into account. In the next section, we use this
expression to numerically evaluateR00.

NUMERICAL CALCULATIONS

The reflection matrix R is essentially an ∞ × ∞ ma-
trix. In order to get a more practical converging solution
for R00, we truncate Eq. (3) after the mth-order, i.e., we
consider spectral orders from -m to + m and take only the
terms from s = 0 to s = m in Eq. (4). We then solve Eq. (3)
for a given truncation order m to calculate R00. Next, we
look for a converging solution for R00 as m is increased.
The calculation is stopped when a prescribed convergence
accuracy is achieved, which is 0.1% in our calculation.

We first present the calculation for µ = 0, i.e., ignoring
the slow variation in the amplitude. Figure 2 shows the
result of this calculation where we have plotted |R00|2 as
a function of free-space wavelength λ (= 2π/k). Here,
we have used the grating parameters corresponding to the
Dartmouth SP-FEL experiment [8], which are β = 0.35, λ g

= 173 µm, d = 100 µm, and w = 62 µm.
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Figure 2: Plot of |R00|2 as a function of λ.

Figure 2 reveals that there is a singularity at 690 µm pre-
ceded by a zero at 677 µm. A singularity in R00 means
that the grating supports the zeroth-order outgoing evanes-
cent wave without any incident wave. In order to satisfy
the boundary condition, the zeroth-order wave is accom-
panied by higher spectral order waves in suitable propor-
tions. It can be shown that there is a threshold wavelength
λth = λg(1 + β)/β, beyond which all spectral orders are
evanescent. For our parameters, λth = 667 µm; therefore,
the singularity appears at a wavelength longer than λ th, and
all spectral orders are therefore evanescent. Hence, there is
a surface mode comprising of several evanescent spectral
orders supported by the grating at this wavelength.

We have also observed that the separation between the
location of the singularity and zero reduces as we reduce
the groove depth d and vanishes as expected when d → 0,
in which case we obtainR00 = 1 for all frequencies.

Next, we discuss the behavior around the singularity. We
find that around the singularity, R00 has a strong depen-
dence on the growth parameter µ. Figure 3 shows the vari-
ation in 1/R00 with µ around the singularity. It is clear that
near the singularity, R00 can be parametrized as −iχ/µ
and from the plot, we find χ = 10 per cm.
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Figure 3: Plots of the real (solid) and imaginary (dashed)
part of 1/R00 as a function of the real (a) and imaginary
(b) part of the growth parameter µ, near the singularity.

We would like to mention that dependence of R00 on µ
plays an important role in determining the dispersion rela-
tion for the growth rate. Kim et al. [1] have derived the
following dispersion relation for the sheet electron having
a surface current density K , skimming over the grating at a
height h from the top surface of the grating:

µ2 =
2πΓ0

γ3β3

K

IA
R00

−2Γ0h, (5)

where IA = 17 kA is the Alfven current. Assuming R00

to be a smooth function of λ, they conclude that the dis-
persion relation is quadratic. However, as explained in the
previous paragraph, near the singularity,R00 =−iχ/µ and
hence we find that the dispersion relation becomes cubic,
as also obtained in Refs. [2,7]. However, away from the
singularity, R00 has a smooth dependence on µ, and the
dispersion relation is quadratic in µ.
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FORMULA FOR RESONANT
WAVELENGTH

As discussed in the last section, for a given phase veloc-
ity βc, the grating supports a surface wave having a free-
space resonant wavelength λR. It will be useful to have a
simple analytic formula for λR in terms of β and grating
parameters. To the best of our knowledge, such an analytic
formula does not exist. Here, we present an approximate
formula for λR for a shallow rectangular grating. For this
purpose, we find that it is more useful to choose the eigen-
modes of the groove (x < 0) as the basis set for the analy-
sis, unlike the free space modes above the grating (x > 0)
in the previous sections. Such an analysis is reported by
Andrews et al. [2]. They define a scattering matrix R that
relates the mth-order wave in the groove to the n th-order
wave. They find that a surface mode is supported by the
grating if the dispersion relation |R − I | = 0 is satisfied
where | | denotes the determinant of the matrix. Solving
this dispersion relation numerically, one can calculate λR

for the given β. Their computation shows that the disper-
sion relation is accurately described (within a few percent)
even if we use a single matrix element R00 in the above
dispersion relation, implying that we need to simply solve
R00 = 1, which in our notation can be written as

R00 = − 2k

wλg
tan(kd)

︸ ︷︷ ︸

m=1∑

m=−1

cos(αmw)− 1
Γmα2

m

= 1. (6)

The above simplified dispersion relation is remarkable
since it makes an approximate analytic calculation possible
here. This equation can be solved for λ in terms of grat-
ing parameters for a given β, and the solution gives us λR.
Note that here we are considering the EM field supported
by the grating in the absence of electron beam and hence,
µ = 0. We now try an approximate solution of the above
equation for the case kd � π/2 for which the underbraced
term will be very small. Hence, the solution of the above
equation requires the series sum to be very large. Out of
three terms in the series, only the m = 1 term can blow up
since Γ1 = 0 for λ = λ0

R, where λ0
R = λg(1+β)/β. Hence,

an approximate solution can be tried around λ = λ0
R by ne-

glecting the two terms corresponding to m = 0 and -1, and
retaining only the m = 1 term in Eq. (6). An approximate
solution of the resulting equation gives us

λR = λ0
R + ∆λ, (7)

where ∆λ = (λg/2)(δ/k0
R)2, k0

R = 2π/λ0
R, and δ is given

by

δ =
2 tan(k0

Rd)
k0

Rwλg

{
1− cos(wk0

R)
}

.

Note that Eq. (6) actually gives a quadratic equation in
λ having two solutions, and we have written only one so-
lution. The second solution is not physical since it is at a
wavelength λ < λth, which means there will be radiating

modes at that wavelength, and the grating can not support
radiating modes without any external source. Similarly,
one can try the solution of Eq. (6) around λ = λ g(1−β)/β
(where Γ1 = 0), but the solution is not physical.

Figure 4 shows a comparision between values of λR cal-
culated from Eq. (7) and results obtained from more rigor-
ous numerical calculations in the previous section for dif-
ferent values of groove depth d. We find that the agreement
is good up to d = 100 µm, which means our approximate
formula is valid up to kd = 0.9.
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Figure 4: Plot of resonant wavelength λR as a function of
groove depth d. The solid line is obtained using Eq. (7) and
filled circles are obtained by detailed numerical calculation.

CONCLUSIONS

To summarize, we have presented a calculation of R00

for a rectangular grating and studied its frequency depen-
dence. We introduced and evaluated a parameter χ to char-
acterize the behavior of R00 around the singularity. We
have also presented an approximate formula for calculat-
ing the resonant wavelength of a rectangular grating for the
given phase velocity. The analysis is useful in developing
a better understanding of SP-FELs [9].
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