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Abstract

This paper is devoted to the development and optimiza-
tion of an adaptive grid Vlasov solver on a reduced axisym-
metric model where the canonical angular momentum in-
variant is assumed to be 0. Whereas in PIC simulations
most computational effort is put where the particle density
is highest, the number of grid points in our adaptive Vlasov
solver is higher in zones where the phase-space distribu-
tion function f varies most. Therefore, we expect that they
might be more efficient for the investigation of non linear
halo formation.

INTRODUCTION

Even though PIC simulations have proven to be an effi-
cient tool for beam simulations for many years, they are
subject to numerical noise which only decreases slowly
(as 1/

√
N ) when the number of particles N is increased.

Therefore other methods should be investigated, when one
is interested in accurate simulations of high intensity beams
especially in the low density part of phase space.

We have been developing new methods based on the di-
rect resolution of the Vlasov equation on a grid of phase
space [1]. However, especially for high intensity beam
simulations in periodic or alternating gradient focusing
fields, where particles are localized in phase space, adap-
tive strategies are required to get computationally efficient
codes. To this aim, we have been developing moving grid
techniques [2] as well as fully adaptive techniques based on
interpolating wavelets [3, 4, 5]. On our way to full 2D sim-
ulations of transverse phase space, already solved with uni-
form discretization [6], we introduce here a reduced model
which will enable us to evaluate the code, optimize it and
give us a good idea of its features.

The paper is organized as follows. We first derive the
reduced model that we shall use to evaluate the method.
We then recall the idea of hierarchical approximation and
give the algorithm implemented in our code. Thereafter,
we discuss optimization strategies for the adaptive method
and conclude with representative simulations.

A REDUCED AXISYMMETRIC MODEL

We consider an axisymmetric beam described by its dis-
tribution function f(z, r, vr, vθ) transported with constant
velocity vb along the z axis. Its transverse motion can be
described by the paraxial Vlasov-Poisson model in cylin-
drical coordinates:
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where β = vb/c and γ = (1 − β2)−1/2. The self electric
field is Er and v×Bself in this model reduces to β2Er. The
external field B(z) is supposed to be periodic with period
L. Hence this equation is coupled self-consistently with the
Poisson equation

1
r

d

dr
(rEr) =

q

ε0
n. (2)

In the sequel, we will consider a reduced model, where
the invariant canonical momentum is Pθ = 0. Moreover,
in order to avoid numerical round-off errors arising when
working with quantities of different orders of magnitude,
we shall use dimensionless coordinates. Thus, we define
our dimensionless variables z̃ = Lz, r̃ = Lr, ṽ = vbv,
Ẽr = ĒEr, B̃ = B̄B, ñ = n̄n. Plugging those into the
Vlasov equation (1), we get
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Now, the total number of particles N0 obeys
2π

∫
L2n̄ñr̃dr̃ = N0. In order to normalize it to 1

in the dimensionless variables, we set 2πn̄L2 = N0.
Moreover, in order to eliminate the coefficients in
Poisson’s equation, we set ε0Ē = qn̄L. We then find

qLĒ

γ3mv2
b

=
q2N0

2πε0γ3mv2
b

= K

which is the dimensionless perveance. Finally, we set

k2
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(qB̄LB̃(z)
2γmvb

)2
.

Then dropping the tilde symbol our model reads:
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+ vr

∂f
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KEr − k2

0(z)r
) ∂f

∂vr
= 0, (3)

coupled self-consistently with the Poisson equation

1
r

d

dr
(rEr) = n. (4)

Although this model, being only one-dimensional in ve-
locity does not support the KV solution as an exact solu-
tion, we can use the Courant-Snyder theory, assuming the
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self field is linear in r to get an approximate matching con-
dition by solving the envelope equation

R′′ + k2
0(z)R− K

R
=

ε2KV

R3
. (5)

The initial distribution f0 with the given N0 and vb such
that rRMS and vrRMS are equal to those computed from
the matched enveloppe values yields an approximately
matched beam.

HIERARCHICAL APPROXIMATION

Our aim is to develop an efficient solver for the Vlasov
equation, based on an adaptive grid of phase space. We
shall use the semi-Lagrangian method [1], generalizing the
split solver of Cheng and Knorr [7]. Using the conservation
of the distribution function f along the characteristics, the
method updates the values of f at the grid points in two
steps: 1) Compute the origin of the trajectory ending at the
grid point, 2) Interpolate the value at the origin from the
known grid value.

Especially for beam transport in periodic and alternat-
ing gradient focusing fields, using a uniform grid of phase
space is very inefficient, as lots of grid points bring very
little enhancement in terms of precision. Therefore, we
want to use a method finding out automatically, depend-
ing on the function f being interpolated, which grid points
from an underlying uniform grid are really needed to get
the desired precision. This can be done with non linear
approximation [8]. Let us briefly explain the idea. As-
sume we want to approximate a given function by its lin-
ear interpolant on a given set of uniformly distributed grid
points. Then f is approximated by fh =

∑
i f(xi)ϕi(x)

where ϕi is the hat function centered at grid point xi (see
Fig. 1). In order to get a better approximation, the usual
method is e.g. to use twice as many grid points and hat
functions half as large (bottom right part of Fig. 1). An-
other way, which gives exactly the same approximate fh on
the finer grid, is to keep the hat functions from the coarser
grid, and add finer new ones at the new grid points (bottom
left part of Fig. 1). This is called hierarchical approxima-
tion. The difference is that in the latter case the coefficient
in front of the hat function at a new grid point is not any-
more the value of f at that grid point, but the difference
between f and its interpolant at the coarser level. Hence
the coefficients are small when the coarse approximation is
good. Non linear approximation consists in keeping the N
highest coefficients in a hierarchical decomposition. It is
non linear because the coefficients that are kept depend on
f . Using a hierarchical approximation of f , only the grid
points where f varies most are kept. And only those need
to be handled by our time advance algorithm. This gives an
accurate representation of f with relatively few grid points.
The grid points used to approximate f can be compared to
the approximation of the beam by macro-particles in PIC
codes. Fig. 2 gives the description of f in the case of semi-
Gaussian beam by PIC macro-particles (left) and by a non

Figure 1: Hierarchical (left) and uniform (right) refinement
of a coarse grid.

linear approximation on a grid (right). In the usual particle
description, particles are concentrated where f is highest.
In the non linear grid approximation, kept grid points are
concentrated where f varies most. Therefore one expects
that non linear grid approximation will be more effective at
describing variations of f in zones of weak density, typi-
cally where halos are formed.
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Figure 2: Description of f with a PIC code (left) and with
a non linear approximation (right).

NUMERICAL ALGORITHM

Hierarchical decompostion is closely related to wavelet
theory. In the wavelet terminology, the approximating
function at the coarse level is called scaling function,
and the approximating functions at the finer levels (which
can be the same as in our example) are called wavelets.
We will consider only scaling functions (basis functions)
constructed using Lagrange interpolating polynomials and
wavelets which are identical scaled versions of the scaling
function (see [3] for more details). The wavelets can be
modified as presented in [4] in order to exactly conserve
moments of f if needed, but we shall not do this here.

The 2D description of f is done using a tensor product
representation. The distribution function is approximated,
in a hierarchical approximation on J levels, by

f(r, vr) =
∑
k1,k2

ck1,k2ϕk1(r)ϕk2(vr)

+
J∑

j=0

∑
k1,k2

22−1∑
β=1

dj,β
k1,k2

φj,β
k1,k2(r, vr), (6)
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where φj,β
k1,k2(r, vr) = ϕ

j,β/2
k1

(r)ϕj,β%2
k1

(vr). Here β/2 is
the integer division of β by 2 and represents the first term
in the binary expansion of β and β%2 is the remainder of
the integer division of β by 2 and represents the last term
in the binary expansion of β. Using the same principle
of binary expansion this formula can be extended to arbi-
trary dimension by replacing the 22 in the sum over β in
2D by 2n in nD. Moreover, the scaling function at level
j is ϕj,0

k1
(x) = ϕ(2jx − k1) and the wavelet at level j is

ϕj,1
k1

(x) = ϕ(2j(2x − 1) − k1). Here ϕ denotes the scal-
ing function (or basis function) at the coarsest level. Using
the principle of non linear approximation, only the largest
terms in this sum will be kept. The charge and current den-
sities ρ(r, t) = q

∫
f dvr and j(r, t) = q

∫
fvr dvr can be

easily computed by integrating (6) with respect to vr mak-
ing the adequate change of variables and noticing that ϕ is
constructed such that

∫
ϕ(x) dx = 1 and

∫
ϕ(x)x dx = 0.

Computing ρ and j in this way only takes into account the
terms in expression (6) which are kept in the non linear ap-
proximation and thus reduces considerably the number of
operations needed.

In order to perform the time advance, knowing fn at time
tn by its non linear approximation, we need to predict the
terms that will appear in the non linear approximation of
fn+1. Therefore, we predict a set of grid points by ad-
vancing the grid points kept for fn and including in the
predicted grid, points around the advanced points. Indeed,
the predicted points are all the grid points around the ad-
vanced points, in a square of width the size of the scaling
function at this level, at the given level and one level finer.
The predicted grid is at the end enhanced so that it becomes
a well formed tree needed to perform the wavelet decom-
position. This is an additional step compared to the usual
semi-Lagrangian method. We can now give the algorithm,
that can be implemented both using a splitting between r
and vr coordinates, as proposed by Cheng and Knorr in [7],
or using a non split algorithm as proposed in [2]. The split
algorithm is given in Fig. 3 and the non-split algorithm in
Fig. 4.

OPTIMIZATION

Data structure. Thanks to non linear approximation, the
distribution function can be approximated almost as well
using a lot fewer grid points. Hence, in order to save mem-
ory as well as computing time, we do not want to store
anymore the approximation points in an array containing
all the points of the fine grid. In the first version of the
code, a hash table was used for storing the points. This
was very good for memory use, but far from optimal in
terms of computing time. Hence we changed to a new data
structure, trading some additional memory use for a much
faster computing time. We now use a sparse data structure
based on two levels of dense arrays. The first array contains
all the grid points up to some intermediate level. The sec-
ond, which is allocated where needed, contains all the grid
points from this intermediate up to the finest level. Hence

1. Read input parameters;
2. Compute initial conditions: electrostatic field,

wavelet decomposition of the distribution function;
3. For all time steps t required;

3A. Splitting in v-direction;
3A.1 Prediction step in v-direction;
3A.2 Make a well formed tree;

backward advection in v-direction;
3A.3 Adaptive wavelet transform;

→ Compute new nonlinear approximation
3B. Splitting in x-direction;

3B.1 Prediction step in x-direction;
3B.2 Make a well formed tree;

backward advection in x-direction.
3B.3 Adaptive wavelet transform;

→ Compute new nonlinear approximation
3C. Compute charge density

Solve Poisson.
End for

Figure 3: Split algorithm

1. Read input parameters;
2. Compute initial conditions: ρ, j, Er, Epred

r

wavelet decomposition of the distribution function;
3. For all time steps t required;

3.1 Global prediction step. Grid points are predicted
using explicit Euler scheme.
3.2 Make a well formed tree;
3.3 Backward advection based on following;

Compute jn, then Epred
r from Ampere’s law;

Do until |Er − Epred
r | < ε;

3.3.1 V
n+ 1

2
r,j = vr,j − ∆t

2 Epred
r (ri)

3.3.2 Rn
i = ri −∆tV

n+ 1
2

r,j

3.3.3. V n
r,j = V

n+ 1
2

r,j − ∆t
2 En

r (Rn
i )

3.3.4. Compute charge density;
Solve Poisson. Compute new Epred

r .
3.4 Adaptive wavelet transform;
End for

Figure 4: Non split algorithm

all grid points can be accessed with at most one indirection
pointer. This new data structure enabled us to reduce the
execution time by a factor 3.

Parallelization. There are basically two kinds of data lo-
cality in the different steps of the algorithms. Some need
to access points being physically close in phase space, and
others need to access points level by level. At coarser lev-
els, points are not physically very close. Hence one sin-
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gle domain decomposition, as we wanted to use, implies
complex data shape access. For this reason the code was
parallelized using OpenMP targeting shared memory com-
puters to avoid calling communication subroutines. For a
large grid, the efficiency of the parallelization was .89 on
16 processors, .79 on 32 processors and .66 on 64 proces-
sors of an SGI Origin 3800 at 500 MHz (an efficiency of
1 correspond to a speed-up equal to the number of proces-
sors). The parallelization strategy and experimental results
are described in [9].

SIMULATION RESULTS

We consider the evolution of a non stationary semi-
Gaussian beam defined by the initial distribution in the di-
mensionless units

f0(r, vr) =
1√

2πvth

e
− v2

r
2v2

th , for r < a,

where a and vth are given by the matching condition for
the envelope equation (5). We consider a L-periodic focus-
ing field of the form B(z) = α(1 + cos(2πz/L)2), with
α = 1.12T . In our simulations a 5 MeV proton beam is
transported over 60 lattice periods. For a beam current of
1.9 A and a non-normalized emittance of 10−5π m. rad.
This yields a perveance K = 10−4, an undepressed phase
advance σ0 = 2.3 rad per period, and σ = 0.45 rad per pe-
riod, so that the tune depression for the envelope equation
is high and approximately 0.2. The underlying fine grid
used for the simulation consists of 512 × 512 grid points
and we take 50 time steps per lattice period.

On Fig. 5 and 6 we display snapshots of the phase space
distribution and the charge density in the matched case.
The little islands around the beam represent values of 10−4

which are in the range of numerical errors. We do not con-
sider them physically relevant.

On Fig. 8 and 9 we display snapshots of the phase space
distribution and the charge density in the case where a, vth

and K are all increased by a factor of 50 % compared to
the matched case.

The Vlasov solver follows very well the evolution of fil-
amentation. Shoulders appear. Notice however that our re-
duced model ignores voluntarily azimuthal motion of par-
ticles. We compared the uniform and adaptive grid solvers
in the matched case. For the adaptive solver there is an
additional relative error of 10−4, but it runs about 5 times
faster than the uniform grid solver. Fig. 7 shows the grid
points that are kept by the adaptive solver at two different
time steps.

CONCLUSIONS

Grid based Vlasov solvers are a valuable tool to have
in one’s simulation toolbox. They are devoid of numer-
ical noise, which makes them interesting for applications
involving physics in low density regions of phase space.

We have shown here that by using an adaptive grid strat-
egy they can also become computationally efficient. The
reduced model that has been presented here gives a good
overview of the features of such a code. Indeed they can be
used as a cross-check with PIC codes. We are now work-
ing on a full 2D solver based on the same technique. It
should confirm the PIC simulation results and give new in-
sight in high tune depression regime for any beam distrib-
ution where strong nonlinear effects dominate.
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Figure 5: Periodic focusing, matched semi-Gaussian dis-
tribution: Snapshots of the distribution function in the
r − r′ phase space, initial condition (top left), after 20
(top right), 40 (bottom left), 60 (bottom right) periods.
The black contour lines correspond respectively to densi-
ties 0.9, 0.5, 0.1, 10−2, 10−3, 10−4 times the beam maxi-
mal density.

REFERENCES
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Figure 8: Periodic focusing, mismatched semi-Gaussian
distribution: Snapshots of the distribution function in the
r − r′ phase space. See Fig 5 for details.
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Figure 9: Periodic focusing, mismatched semi-Gaussian
distribution: Snapshots of charge density at time, initial
condition (top left), after 20 (top right), 40 (bottom left),
60 (bottom right) periods.
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