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Abstract

The catch up distance for the resistive wall wake in a
round pipe is approximately equal to the square of the pipe
radius divided by the bunch length. The standard formulae
for this wake are applicable at distances much larger than
the catch up distance. In this paper, we calculate the re-
sistive wall wake at distances compared with the catch up
distance assuming a constant wall conductivity.

INTRODUCTION

A recent proposal to generate attosecond [1] X-ray
pulses using energy modulation of the beam via resonant
interaction with an optical laser involves propagation of rel-
ativistic electron bunches as short as ∼ 30 nm. Calculation
of the short range resistive wave generated by such a bunch
involves several issues not encountered in the classical the-
ory of wakefields.

First, one cannot make the usual assumption v = c for
such bunches and typical transverse sizes b of the vacuum
chamber. Indeed, this assumption is valid if the spot size on
the wall of the relativistically contracted vacuum field of a
point charge, b/γ, is much smaller that the bunch length
σz . For b equal to several millimeters and γ ∼ 104 this,
however, is not valid if σz ∼ 30 nm. Second, one can-
not assume a constant conductivity σ and has to take into
account the frequency dependence σ(ω) [2]. Moreover, the
anomalous skin effect may play a role at such high frequen-
cies. Finally, the catch up distance for the wake, which is
estimated as b2/2σz is of the order of tens of meters, and
the usual definition of the wake as due to the steady state
fields in the pipe is not valid. One has to take into account
the transient effect of the field build up as the bunch propa-
gates from the entrance to the exit of the pipe.

A complete calculation of the wake which realistically
takes into account all of the above features of the beam in-
teraction with the wall is a complicated problem. In this
paper we will address only one part of it. Specifically, we
will study the time dependent build up of the wakefield as-
suming a constant conductivity σ of the pipe and also us-
ing the v = c assumptions. The method developed in this
paper can be generalized to include the more realistic as-
sumptions about the beam-wall interaction.

FORMULATION OF THE PROBLEM

Consider geometry shown in Fig. 1. An infinitely long
round pipe of radius b has wall conductivity σ in the right
part, z > 0, and an infinite conductivity at z < 0. A particle
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Figure 1: A round pipe of radius b has wall conductivity σ
at z > 0; the wall conductivity at z < 0 is infinite. Two
point charges separated by the distance s propagate along
the axis of the pipe with the speed of light c.

beam travelling with the speed close to the speed of light
from left to right enters the region z > 0 at time t = 0. Our
goal is to calculate how the wakefield builds up when the
beam propagates through the pipe. We will constrain our
analysis by studying the longitudinal wake only.

As always in the wakefield theory, we will consider 2
particles of the beam separated by distance s on the axis
of the pipe. The electric field Ez generated by the leading
particle will act on the trailing one.

In the left part of the pipe, z < 0, where the wall has an
infinite conductivity, the electric and magnetic fields of the
leading particle are

E(vac)
r (z, r, t) = B

(vac)
θ (z, r, t) =

2q

r
δ(z − ct) . (1)

The longitudinal component of the field is zero at z < 0.
The superscript “vac” indicates that those fields are the
same as in free space.

For the finite conductivity part of the pipe, the boundary
condition on the surface of the wall is given by the so called
Leontovich boundary condition [3]

Ê(wall)
z (z, ω) = (i− 1)

√
ω

8πσ
B̂

(wall)
θ (z, ω) , (2)

where the hat denotes the Fourier transform, f̂(ω) =
(2π)−1

∫∞
−∞ f(t)eiωtdt. The total field in this part of the

pipe is equal to the vacuum field given by Eq. (1) and a
non-singular solution of Maxwell’s equations which satis-
fies the boundary condition

Ez |r=b(z, t) = E(wall)
z (z, t) . (3)

Only the latter contributes to the wake.
We will use a perturbation approach to calculate Ez at

z > 0. In this approach, the magnetic field of the leading
particle on the wall is assumed to be equal to its value in
the pipe of infinite conductivity,

B
(wall)
θ = B

(vac)
θ |r=b . (4)
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Note that this approach gives the correct steady state wake
in the limit s � (b2c/4πσ)1/3 [4].

SOLUTION OF MAXWELL’S EQUATIONS

As a first step, let us calculate explicitly the time depen-
dent function E

(wall)
z (z, t). For B̂

(wall)
θ (z, ω) we have

B̂
(wall)
θ (z, ω) =

1
2π

∫ ∞

−∞
dtB

(vac)
θ (z, b, t)eiωt

=
q

πbc
eiωz/c . (5)

Using Eq. (2) we find

E(wall)
z (z, t) =

∫ ∞

−∞
dωÊ(wall)

z (z, ω)e−iωt

= (i− 1)
q

πbc

√
ω

8πσ

∫ ∞

−∞
dω
√

ωe−iωt+iωz/c

=
q

2πbcσ1/2

h(t− z/c)
(t− z/c)3/2

, for z > 0 (6)

where h(t) is the step function. The integral∫∞
−∞ dω

√
ωe−iωt+iωz/c in the last equation is computed

by shifting the integration path in the complex plane ω (see,
e.g., Ref. [5]).

To find Ez(z, r, t) we need to solve the wave equation

1
r

∂

∂r
r
∂Ez

∂r
+

∂2Ez

∂z2
− 1

c2

∂2Ez

∂t2
= 0 (7)

with the boundary condition at r = b given by Eq.
(6). We will use the Green function method and define
a Green function G(z, t) = Ẽz(z, 0, t), where Ẽz(z, r, t)
is the solution of Eq. (7) with the boundary condition
Ẽz(z, b, t) = δ(z)δ(t). The Green function gives the lon-
gitudinal field on the axis generated by a localized source
on the wall turned on for an infinitely short period of time
(∝ δ(z)δ(t)). If the Green function is known, then the lon-
gitudinal field on the axis generated by the boundary con-
dition Eq. (6), which we denote by E(z, t), is given by the
following expression:

E(z, t) =
∫ ∞

0

dz0

∫ ∞

−∞
dt0G(z − z0, t− t0)E(wall)

z (z, t) .

To find Ẽz(z, r, t) we will use the Hertz potential
Π(z, r, t), related to the electric field through the follow-
ing equation [6]:

Ẽz(z, r, t) =
(

∂2

∂z2
− 1

c2

∂2

∂t2

)
Π(z, r, t) . (8)

Using Laplace transformation, one can find the following
expression for Π,

Π(z, r, t) =
∞∑

m=1

cJ0(µmr/b)
µmJ1(µm)

×J0

(
µmc

b

√
t2 − z2

c2

)
h

(
t− |z|

c

)
, (9)

where J0 is the Bessel function of zeroth order. The
Hertz potential on the axis which we denote by Π0(z, t),
Π0(z, t) = Π(z, 0, t), is obtained from Eq. (9) by replacing
J0(µmr/b) with 1. The plot of the function Π0 is shown
in Fig. 2. It is seen from this plot, that Π0 = 1/2 for
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Figure 2: Plot of function Π0 versus
√

t2c2 − z2/b.
√

t2c2 − z2 < b, which means that the electric field on axis
given by Eq. (8) is equal to zero for ct <

√
z2 + b2. Of

course, this is exactly what one expects from the causality
argument.

Introducing a new variable s = ct − z, we can express
G as

G(z, t) =
1
c

(
∂

∂t

)
s

(
∂Π0

∂z
− 1

c

∂Π0

∂t

)
, (10)

where (∂/∂t)s = c∂/∂z + ∂/∂t.

TIME DEPENDENT WAKE

We now define the longitudinal transient wake as

wl(s, t) = − c

q

∫ t

−∞
dt′E(s, t′) . (11)

Note that this wake does not only depend on the distance s
between the particles but also on the time t, or, equivalently,
the position inside the pipe z = ct. We expect that when
t → ∞, the above wake will approach the usual steady-
state wake. Using Eq. (9) we can obtain the following
expression for the wake

wl(s, t) = − c

q

∫ t

−∞
dt′

∫
dz0dt0 (12)

×G(z − z0, t
′ − t0)|z=ct′−sE

(wall)
z (z0, t0)

= −1
q

∫ t

−∞
dt′

∫
dz0dt0

×
(

∂

∂t′

)
s

(
∂Π0

∂z
− 1

c

∂Π0

∂t′

)
E(wall)

z (z0, t0)

= −1
q

∫
dz0dt0H(z − z0, t− t0)|z=ct−sE

(wall)
z (z0, t0) ,
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with H(z, t) = (∂/∂z−c−1∂/∂t)Π0(z, t). Note that Π0 is
actually a function of a single argument ξ =

√
t2 − z2/c2,

Π0(z, t) = F (ξ).
We are interested in values of z and ct of the order of

the pipe length L, and hence, ξ ∼ L/c. A typical value of
s is of the order of the bunch length σz , s ∼ σz . Assum-
ing L � σz , we have ξ ≈ √

2ts/c . Using the following
transformation,(

∂

∂z
− 1

c

∂

∂t

)
F (ξ) = F ′(ξ)

(
∂ξ

∂z
− 1

c

∂ξ

∂t

)

≈ −
√

2t

cs
F ′(ξ) ≈ −2

(
∂F

∂s

)
t

, (13)

we introduce the wake potential W (s, t) such that

wl(s, t) =
∂W (s, t)

∂s
, (14)

and find that

W (s, t) =
2
q

∫
dz0dt0 (15)

×Π0(z − z0, t− t0)|z=ct−sE
(wall)
z (z0, t0)

=
1

πbcσ1/2

∫ ∞

0

dz0

∫ ∞

z0/c

dt0
Π0(z − z0, t− t0)|z=ct−s

(t− z/c)3/2
.

The integration in Eq. (15) can be carried out analytically,
with the result W (s, t) = W0(s)R(v) , where

W0(s) =
c3/2t

πb
√

σs
, (16)

R(v) = 1− 4
∞∑

m=1

µmv sin(µmv) + cos(µmv)− 1
µ3

mv2J1(µm)
,

and v =
√

2cts/b2. The plot of the function R is shown in
Fig. 3; it approaches 1 in the limit v → ∞. Note that in
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Figure 3: Plot of the function R.

this limit wl = ∂W0/∂s , which recovers the resistive wall
wake result for an infinitely long pipe.

Using the above result for the time-dependent point
charge wake we calculated the wake for a Gaussian bunch.
The wake is defined as

wbunch(s, l) =
1
l

∫ ∞

s

ds′λ(s′)wl(s′ − s, l/c) , (17)

where λ(s) = (1/
√

2πσz)e−s2/2σ2
z is a Gaussian distrib-

ution function with the rms bunch length σz . The quan-
tity wbunch has a meaning of the wake accumulated over
the distance l of the resistive part of the pipe normalized
by the length of the path; it has a dimension of V/C/m.
When l → ∞, the wake wbunch(s, l) should approach to
the known result for an infinitely long pipe.
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Figure 4: Wake for a Gaussian bunch for different values
of the parameter 2lσz/b2 indicated by a number near each
curve. The blue curve shows the wake in the limit l = ∞,
and the dashed magenta line is the Gaussian distribution of
the bunch.

The result is shown in Fig. 4, where the vertical axis
shows the normalized wake wbunch(s, l)(b2σ3

zσ/c)1/2.
The figure clearly demonstrates how the wake accumulates
over the distance∼ b2/σz which is of the order of the catch
up distance.

In conclusion, we calculated a time-dependent resistive
wall wake for a simplest model that assumes a constant
conductivity and uses a perturbation approach with the as-
sumption v = c. Although this models is not directly ap-
plicable to the extremely short bunches envisioned in some
modern applications, it illustrates the process of wake build
after the bunch enters the pipe with resistive walls.
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