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Abstract

In this paper, I present the formula, describing a thresh-
old of the regenerative multi-pass Beam Breakup (BBU)
for a single dipole higher order mode with arbitrary po-
larization in a two-pass accelerator with a general-form,
4x4 recirculation matrix. Then, I present a mathematical
relation between transfer matrices between cavities of the
accelerating structure and recirculation matrices for each
cavity, which must be satisfied in order to successfully sup-
press the BBU by reflection or rotation in several cavities.

INTRODUCTION

Regenerative multi-pass BBU arises from interaction of
an intense recirculated beam with Higher-Order Modes
(HOM) of the accelerating structures. In the JLab FEL Up-
grade [1], the regenerative, multi-pass BBU was observed
at a beam current of approximately 5 mA. Because BBU
imposes an immediate threat to operations of the machine,
suppression of regenerative BBU is a task of paramount
importance.

As shown by R. E. Rand and T. I. Smith in [2], the thresh-
old of regenerative BBU strongly depends on a form of the
4x4 recirculation matrix. In their paper, the authors inves-
tigated the possibility of suppressing the BBU by means of
reflection or 90◦-rotation of the beam displacement on the
second pass. In the Summer of 2004, an optical reflector
was installed in the recirculation pass of the JLab FEL Up-
grade. The insertion consists of 5 skew-quadrupoles and
reflects the beam displacement respective to the y = x
plane [3]. The first experience with the reflector showed
an increase of the BBU threshold for offensive modes by a
factor of 5 [4].

In this paper, a formula for the BBU threshold for a sin-
gle dipole HOM with arbitrary polarization in a two-pass
machine with a general-form, 4x4 recirculation matrix is
derived. The paper also contains formulas describing evo-
lution of the HOM voltage above and below the threshold.
To suppress BBU by optical transformations in a machine
consisting of several or many accelerating cavities, the re-
circulation matrix for each cavity has to be of a form that
provides effective BBU suppression. To preserve the form
of the recirculation matrix from cavity to cavity, transfer
matrices between the cavities have to satisfy a condition
that is presented at the end of this paper.
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BBU THRESHOLD IN
TWO-DIMENSIONAL SYSTEMS AND

HOM VOLTAGE BEHAVIOR ABOVE AND
BELOW THE THRESHOLD

Single-Mode Approximation

Simulation results and experimental data presented else-
where [5] suggest that dipole TM HOMs with a quality fac-
tor of 105−106 will limit the maximum recirculated current
to the order of tens to hundreds of milliamps. Assuming a
quality factor of the order of 105 − 106 and a typical HOM
frequency of the order of 2 GHz, one concludes that a typi-
cal bandwidth of dangerous HOMs is of the order of 1 kHz
to 10 kHz.

Imperfections and asymmetrical features of cavities such
as couplers violate two-dimensional symmetry of cavity
geometry and split frequencies of degenerate dipole modes.
A typical separation between two orthogonal polarizations
of the same dipole mode in a superconducting RF cavity is
of the order of several hundred kHz to several MHz. Be-
sides, imperfections cause the frequency of HOMs to vary
from cavity to cavity. The variation of the HOM frequency
from cavity to cavity is also of the order of several hundred
kHz to several MHz.

The probability of overlapping of HOM frequencies is
small if the number of cavities is significantly smaller than
the ratio of the spread of HOM frequencies to the typical
bandwidth of the modes. For example, assuming an HOM
bandwidth of 10 kHz and a frequency spread of a few MHz,
one can consider modes separately if the number of cavities
is of the order of a few tens.

Two-Dimensional Formula for the BBU Threshold

Steering and misalignment errors lead to a constant off-
set of the beam centroid relative to the cavity axis on the
first pass. On the second pass, the transverse beam dis-
placement consists of two terms: a constant offset due to
steering/misalignment errors and an oscillatory term in-
duced by the HOM voltage on the first pass. The constant
offset induces the HOM voltage, which is always limited
in amplitude. The oscillatory term, on the contrary, consti-
tutes a feedback that can cause regenerative beam breakup
and, in theory, an infinite growth of the HOM voltage.

In calculating the threshold of the regenerative BBU, we
treat the voltage induced by the oscillatory term on the sec-
ond pass as a perturbation and assume that the HOM volt-
age is a harmonic function of time. A variation of the en-
ergy stored in a dipole TM HOM produced by a point-like
bunch, ∆U , is given, to the first order in the bunch charge,
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by [6]

∆U = −q
Va

a
cos(φ)(x cos(α) + y sin(α)), (1)

where Va is the accelerating HOM voltage at the radius
of the beam pipe a induced by previous bunches, φ is the
phase of the point-like bunch with respect to the peak of
the HOM electric field, q is the bunch charge, (x, y) is the
bunch displacement vector, and α is the mode polarization
angle in the xy coordinate system.

The energy deposited by the bunch in the HOM on the
first and second passes can be written as

∆U1 = −q
Va

a
cos(φ)(x1 cos(α) + y1 sin(α)), (2)

∆U2 = −q
Va

a
cos(φ + ωTr)(x2 cos(α) + y2 sin(α)), (3)

where Tr is the recirculation time. It is assumed in (2-3)
that the voltage amplitude Va does not change significantly
during recirculation. Exactly at threshold, Va is constant.
Coordinates of the recirculated bunch, x2 and y2, can be
expressed via the bunch coordinates before deflection and
the HOM accelerating voltage on the first pass as

x2 = m11x1 + m12x
′
1 + m13y1 + m14y

′
1 −

− qVa

ωap
sin(φ)(m12 cos(α) + m14 sin(α)), (4)

y2 = m31x1 + m32x
′
1 + m33y1 + m34y

′
1 −

− qVa

ωap
sin(φ)(m32 cos(α) + m34 sin(α)), (5)

where p is the beam momentum.
The energy balance equation for the HOM stored energy

is

U̇ = U̇beam − Pc = 〈∆U1 + ∆U2〉 · fb − Pc. (6)

The averaging is done respectively to the phase of the
HOM, φ, taken at moments when bunches pass through the
cavity on the first pass. Ohmic losses in the cavity can be
expressed as [6]

Pc =
V 2

a
(ω

c
)2

a2
(

Rd
Q

)
Q

. (7)

Terms proportional to cos(φ), sin(φ), cos(φ + ωTr), and
sin(φ+ωTr) yield zero after averaging if x1, x

′
1 and y2, y

′
2

in (4-5) are steering/misalignment errors. If the HOM fre-
quency is not equal to a harmonic of the bunch repetition
rate, terms proportional to cos(φ) · sin(φ) also yield zero
and the average value of the sin2(φ) is equal to 1/2. Thus,
Equation (6) can be rewritten as

U̇ = Ib
qV 2

a

ωpa2
m∗

12〈sin(φ) cos(φ + ωTr)〉

− V 2
a

(ω/c)2a2(Rd/Q)Q

= −Ib
qV 2

a

ωpa2
m∗

12

sin(ωTr)
2

− V 2
a

(ω/c)2a2(Rd/Q)Q
, (8)

where

m∗
12 = m12 cos2(α) + (m14 + m32) sin(α) cos(α)

+m34 sin2(α). (9)

At threshold, U̇ is equal to zero. Thus, the threshold current
is given by

Ith
m∗

12

2p

q

ω
sin(ωTr) +

1
(ω/c)2(Rd/Q)Q

= 0, (10)

which yields the threshold current as

Ith = − 2pc

q
ω

c

(
Rd

Q

)
Q m∗

12 sin(ωTr)
. (11)

For positive values of the product m∗
12 sin(ωTr), Equa-

tion (11) yields a negative threshold, implying a stable
beam. However, the beam can be unstable at extremely
high values of the beam current even if m∗

12 sin(ωTr) > 0.
This discrepancy is caused by the assumption that the volt-
age induced by the beam on the second pass is a small per-
turbation to the HOM voltage, which fails at high beam
intensities. In one-dimensional cases, similar dependence
of the threshold on m12 sin(ωTr) was predicted analyti-
cally and observed in simulations in early works by G. A.
Krafft, J. J. Bisognano, and S. Laubach [7] and later by G.
H. Hoffstaetter and I. V. Bazarov [8].

Evolution of the HOM Voltage Below and Above
the Threshold

Equation (8) can be rewritten as

dU

U
= −dt

ω

Q

Ith − I

Ith
. (12)

The solution of the last equation is

U = U0 exp
(
−t

ω

Q

Ith − I

Ith

)
. (13)

The HOM voltage depends on time as

V = V0 exp
(
−t

ω

2Q

Ith − I

Ith

)
. (14)

Equations (13) and (14) describe evolution of the stored
energy and HOM voltage below and above the threshold.
Using equations (13) and (14), one can introduce the effec-
tive quality factor Qeff for the beam-HOM system, given
by the equation

Qeff = Q
Ith

Ith − I
. (15)

Equation (15) can be also rewritten in terms of the decay
time as

τeff = τ
Ith

Ith − I
. (16)
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Above the threshold, the decay time given by (16) changes
its sign and becomes the growth time of the instability.

Equations (13-16) are also valid for negative values of
the threshold current given by (11) for m∗

12 sin(ωTr) > 0
as long as the beam current is not too high and the assump-
tions made during the derivation of (11) are valid. For neg-
ative values of the BBU threshold given by (11), Equation
(15) can be rewritten as

Qeff = Q
−|Ith|

−|Ith| − I
= Q

|Ith|
|Ith| + I

. (17)

The last two equations show that for m∗
12 sin(ωTr) > 0 the

effective quality factor decreases with the beam current.

SUPPRESSION OF REGENERATIVE BBU
BY OPTICAL TRANSFORMATIONS IN
SEVERAL CAVITIES OF A TWO-PASS

ACCELERATOR

Recirculation matrices for two cavities in a two pass-
machine M1 and M2 are related to each other via transfer
matrices between the cavities on the first and the second
pass, T1 and T2 respectively, as

M2 = T2 M1 T−1
1 . (18)

If M1 and M2 are of a form that provides effective sup-
pression of the BBU, Equation (18) yields a condition on
the form of the transfer matrices T1 and T2, which has to
be satisfied for the particular form of the recirculation ma-
trices M1 and M2. Using the fact that the transfer matrices
are symplectic, one can transform the Equation (18) into

M2 = −T2 M1 S T T
1 S. (19)

The last equation also allows one to express the condition
(18) as a set of equations for 2x2 block sub-matrices of
M1,2, T1,2, and S.

Using (18), it is trivial to show that, if M1 and M2 are
fully coupled 4x4 matrices exchanging the x and y beta-
tron planes and all HOMs are bound to the horizontal and
vertical planes, all uncoupled transfer matrices T1,2 satisfy
Equation (18) :

M2 = T2 M1 T−1
1

=
[

X2 0
0 Y2

] [
0 A
B 0

] [
X−1

1 0
0 Y −1

1

]

=
[

0 X2AY −
1 1

Y2BX−1
1 0

]
. (20)

Thus, an optical insertion interchanging the vertical and
horizontal planes installed in the recirculation path can si-
multaneously suppress HOMs in different cavities if the
HOMs are bound to the horizontal and vertical planes.

CONCLUSIONS

Equation (11), describing the BBU threshold for a sin-
gle dipole HOM with arbitrary polarization and a general-
form, 4x4 recirculation matrix in a two-pass accelerator,
has been derived. The equation can be used to estimate the
BBU threshold in the case of several high-Q HOMs if the
separation between frequencies of the HOMs exceeds the
bandwidth of the modes.

Reflection or rotation produced by the recirculation op-
tics can significantly suppress or completely eliminate the
regenerative BBU. This result was first predicted by R. E.
Rand and T. I. Smith in [2]. To provide BBU suppression
by reflection or rotation simultaneously in several cavities
of the accelerating structure, the transfer matrices between
the cavities have to satisfy equation (18).

If HOMs are bound to the horizontal and vertical planes,
BBU can be simultaneously suppressed in several cavities
by an optical transformation with a matrix of the form

[
0 A
B 0

]
, (21)

where A and B are 2x2 block matrices. An optical inser-
tion providing the x − y motion exchange can consist of
solenoids and/or skew quadrupoles and can be located in
the recirculation path of a two-pass machine.
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