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Abstract 
 
We discuss the preliminary calculation on the 

performance of closed orbit feedback system for NSLSII, 
its relation to the requirement on BPM, floor and girder 
stability, power supply stability etc. 

A SIMPLE MODEL FOR ORBIT MOTION 
DUE TO QUADS VIBRATION 

In a simplified model of the storage ring, when all the 
magnets are subjected to an uncorrelated random motion, 
they cause the closed orbit to move. To study this random 
motion, we first examine the effect of quads vibration on 
the vertical orbit. When a specific quad labelled as i with 

strength (kl)i experiences a displacement ∆yi, it gives a 
kick in the orbit and causes a displacement y(z) of the 
orbit at position z. Sum over all the quads i gives: 
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where βi , φi, β(z),  φ(z) are the beta function and betatron 
phase at the quad i and at position z respectively, ν is the 
vertical tune. Now we assign the displacement ∆yi for all  
the quads with different random numbers from a gaussian 
distribution with the same rms value of 1µm, and 
calculate the orbit y(z). For the NSLSII ring model in 
figure 1, averaged over 200 different sets of random 
numbers, the result is shown in figure 4 as the blue curve. 
We plot only two super-periods to see the details. As a 
comparison we plot the function yβ10 µm (βy is in 

meter) and found it is a good approximation. We define 
the rms value σ∆y of the resulting orbit movement divided 
by the rms value of the quads motion as the amplification 
factor for this model. It is a function of the distance z 
along the ring. Obviously, the blue curve is just the 

amplification factor, it varies between about 20 to 50 for 
this case. The fact that the curve is nearly periodic means 
that the 200 samples are nearly enough for convergence 
already. The beam motion is proportional to this function. 
For example, if the rms value of the quads vibration is 0.5 
µm, the orbit motion at the center of the straight section 
will be about 10µm according to figure 2. 
 

 A FEEDBACK SYSTEM BASED ON THE 
SINGULAR VALUE DECOMPOSITION 

 
A schematic diagram for a feedback system based on 
singular value decomposition [1](SVD) is shown in figure 
3. In the figure, y represents the signal from the BPMs 
used in the feedback system while t represents the input 
signal sent to the corrector trims. R represents the 
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response matrix of the storage ring. SVD factorizes R into 
a product of matrices of form: 

 WVUR ~= ,    (2) 
where W is a diagonal matrix, while both U and V are 
orthogonal, i.e., 1~~ == VVUU . This means that in 

figure 3 the response matrix from the input signal fc of V~  
to the output signal fe of W-1 is the identity matrix 1. The 
PID box represents the feedback circuit that connects 
each individual channel of fe to a corresponding fc with a 
high negative gain amplifier. In the low frequency limit, 
the negative gain of the PID circuit is so high that it 
forces the fe to nearly zero. This in turn means that the 
orbit motion generated by the feedback system produces a 
signal in fe which exactly cancels the sum of the signal in 
y generated by the noise due to the electron beam motion 
and the signal in y generated by either the motion of 
BPMs inside the feedback loop or the noise generated by 
the BPM themselves. Thus we can write:  
 

0
11 ~ UyWffVURW cc
−− −== ,  (3) 

where y0 is the array of the signal from the BPMs in the 
feedback loop assuming the feedback loop is open. We 
remark that R may not be a square matrix and may not 
have a inverse matrix to be used to solve the equation, 
specially when the number of BPMs and correctors are 
not equal, hence the repetitive occurrence of UW 1− in 
this equation shows how SVD is useful in solving the 
problem. When y0 is known, this expression can be used 
to calculated the corrector signals cfVt ~= , given the 
response matrix R and its singular value decomposition 
U, V, and W. The array y0 is calculated by 
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where we have used eq.(1) to calculate the contribution 
from the noise generated by the quads as the second term 
on the right hand side, while the first term ∆y0j is the 
signal generated by the j’th BPM itself due to the 
vibration of the BPM itself and the electronic noise in the 
BPM. We remark that ∆y0j does not represent real orbit 
motion. Once the corrector strength vector t is calculated, 
we can calculate the real orbit motion when the feedback 
loop is closed: 
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where the first term is beam motion due to the vibration 
as calculated in the Equation 1 with the index i running 
through all the quads, while the second term is the beam 
motion due to the feedback signal t, with the running 
index k going through all the correctors. 
 

For each set of gaussian random numbers for the quads 
vibration ∆yi and BPM vibration ∆y0j all with rms value 
of 1µm, we used Equation (4) to calculate open loop 
BPM signal y0, then use Equation (3) to calculate the 
corrector vector t, and finally use Equation (5) to 
calculate orbit with the feedback loop closed. After 
averaging over 200 random samples, we obtain the 
residual rms beam motion as shown in the figure 2, 
represented by the red curve. In this specific example, we 
use 4 BPMs and 4 correctors in each super-period. The 
location of them is marked by dark green and pink spots 
in figure 4 respectively. Two BPMs and two correctors 
are in the long straight sections next to the two quads 
QD1, hence they are close to the insertion devises. Two 
BPMs are in the long straight section but next to the short 
dipoles BS. Two correctors are in the short straight 
sections, also next to the short dipoles BS. Hence they are 
at the position with high vertical beta function. Notice 
that to be able to see the residual orbit we multiplied it by 
a factor 10. The height of the pink spots represents the 
rms strength of the correctors in unit of µrad. It is seen 
from figure 2 that the feedback loop reduces the beam 
motion at the center of the long straight section (z=0) 
from 20µm to 0.7µm. The rms corrector strength is on the 
order of 0.7 µrad. To study how the performance of the 
feedback system depends on the number and position of 
BPMs and correctors, we carry out similar calculation for 
different configurations, one of the best is the one in 
figure 1. The amplification factor as we discussed in 
section 1, in this case of closed feedback loop and the 
feedback system configuration described by figure 1, is 
then 0.7. That is, if we assume all the quads and BPM 
mounted on the girders have uncorrelated random motion 
of 0.7 µm and the BPM electronic noise is negligible, the 
residual motion at the centre of the long straight section is 
0.49 µm. Then the requirement for the vertical beam 
motion of 0.6 µm mentioned in section1 is satisfied. In 
figure 3, we plot the ratio of the vertical beam motion 
over the rms beam size as a function of z in the ring. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
 

It is seen that although the condition of beam motion 10% 
of beam size at z = 0 is satisfied (about 9%), it is almost 
satisfied but still slightly higher at z =15 m (12%). Hence 
we need to design the girder system and the floor 
construction such the ground movement rms value below 
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0.7µm. In this calculation we ignored the fact that for low 
frequency ground motion, the movement of different 
components mounted on the girders may be correlated 
since the sound wavelength at low frequency may be 
larger than the girder dimension. Actually, simulation for 
correlated movement of quads mounted on same girder 
shows reduced amplification factor since the quads when 
moving together tends to cancel each other [2]. We also 
ignored the noise caused by the ripples in the power 
supply corrector magnet current. We also neglected the 
effect of stray field, such as the booster noise. However, 
we find that the fast feedback system is very efficient in 
reducing this type of effect, which is similar to the effect 
due to the quads vibration. Compared with this effect, the 
effect due to the vibration of BPMs is much more difficult 
to suppress. Actually, it is very difficult to reduce the 
beam motion to much less than the amplitude of the 
BPMs vibration amplitude. The beam motion due to 
quads and BPM vibration, the focusing effect in the 
insertion devices is found to be negligible. For example, a 
5 m long undulator with K=1 and period 3 cm is found to 
have kl = 0.003/m at 3GeV, this is negligible when 
compared with the typical kl value 0.3-1/m for the quads.  

ORBIT MOTION DUE TO POWER 
SUPPLY NOISE 

For beam motion due to power supply noise, we add a 
third term to the equation similar to equation (4) to take 
into account the field errors ∆tk of the correctors. In a 
digital feedback system, this error is determined by the 
voltage corresponding to the last bit of the power supply 
and the power supply current noise itself [2, 3].  To 
determine the requirement on the size of the last bit of the 
power supply, we need to separate this effect from the 
effect of the ground vibration in our simulation. For this 
purpose, we ignore the vibration or noise of the BPM and 
the quads and let the vector ∆tk takes a Gaussian random 
distribution with rms value of 1 nrad. The resulting rms 
orbit motion averaged over 200 samples is shown in 
figure 4. Again, we use yβ16  nm to approximate the 

beam motion represented by the blue curve, but unit now 

is nm. It is clear from this plot that to have the motion 
smaller than 300nm rms at z = 0, the last bit rms error of 
the power supply must be less than 10 nrad kick. That is, 
for a trim with maximum strength of 1mrad, the error of 

the power supply last bit should be less than 10 ppm in 
order to have the beam motion caused by it to be less than 
0.3 µm, in the case of the feedback system used in figure 
4. Since 0.29 of the size of the last bit is equal to its rms 
value, the last bit size is less than 10 ppm/0.29=33 ppm. 
 
For the horizontal orbit motion, the calculation is similar, 
and gives specification to the tolerance on the noise of the 
dipole power supplies as well as correctors. 

REQUIREMENT ON FLOOR STABILITY 
According to our analysis here, to satisfy the orbit 
stability requirement, the rms motion of the magnets and 
BPMs mounted on the girder must be less than 0.7 µm. 
The short term (within an hour) ground motion is found to 
be about 0.5 µm peak to peak (rms 0.12µm) near the 
future NSLSII site. It is difficult to use feedback system 
to correct the orbit to sub-micron level with the long-term 
(longer than a week) ground motion which is larger than a 
few µm. But since beam lines can be realigned or 
recalibrated, and most experiments require short and 
medium term (between an hour and a week) sub-micron 
stability, this seems acceptable [2].  So the most stringent 
requirement is for the medium term. The closed orbit 
feedback system will pin the orbit to fixed positions 
relative to the BPMs, while the beamline samples have a 
distance from the BPMs unless they are in the feedback 
loop. According to the ATL law [4], these beamline 
samples will move relative to those BPMs used in the 
feedback loop. The relevant motion is then their motion 
relative to the two BPMs closest to them within the 
feedback loop. Assume the distance is typically 10 
meters, by scaling from the NSLSII diameter of  about 
200 m to 10 m, and scaled from half year to one week, 
that the motion is reduced from about 100 µm to 4 µm by 
a factor of 25. This is still much larger than our required 
stability of 0.6µm. Thus it is important to design the 
concrete slab such that the beam line and the two closest 
BPMs are on the same slab with stability better than 0.6 
µm within a desired period. For example, if the 
requirement is no realignment within a week, then the 
slab must not move more than 0.6µm within a week. 
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