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Abstract 
A new method of characterization of the regular or 
chaotic nature of dynamical orbits has been discovered. It 
takes advantage of both morphological and dynamical 
properties of orbits, and can be applied to systems of all 
degrees of freedom. The new technique has been designed 
to analyze time-independent, time-dependent, and N-body 
systems. It can provide straightforward information about 
the transition of orbits from regular into chaotic and vice 
versa, which can happen in time-dependent regimes. 
Equally important is the distinction it can make between 
sticky and wildly chaotic epochs during the evolution of 
chaotic orbits in time-independent regimes. Its most 
important advantage over the existing methods is that, it 
characterizes an orbit using information from a very small 
number of orbital periods. For these reasons the new 
method is extremely promising to be useful and effective 
in a broad spectrum of disciplines. 

OVERVIEW 
The role of chaos in beams has not been completely 

explored. One of the main reasons is that, there are no 
available measures of chaos that can characterize reliably 
and effectively orbits of particles evolving in time-
dependent regimes accociated with beams. The existing 
well-tested measures of chaos are based either on some 
convergence scheme [1] or on frequency analysis methods 
[2]. The main representative of the convergent measures 
is the largest Lyapunov exponent, while frequency 
analysis methods are almost always based on Fourier 
analysis.  

These measures have three main problems. (a) They 
need an orbit to evolve in time significantly before they 
can characterize it reliably. (b) They provide no 
information about the phenomenon of stickiness [3] 
(chaotic orbits may stay restrained for a long time in 
regions which usually surround regular islands in the 
phase space). (c) The evolution of real beams takes place 
in a time-dependent regime. Transient chaos [4] 
(transition of an orbit from chaotic to regular and vice 
versa) is present in this scenario. The existing measures 
are able to provide only average-like characterizations in 
this context. The critical question though remains 
unanswered: what parts of an orbit evolving in the time-
dependent regime of a beam are regular, and what parts 
are chaotic? An answer to that question could provide 
significant intuition and understanding of the structure of 
phase space associated with the system, and could give 

clues about the solution of several problems, e.g. the 
generation of halos, or the emmitance growth mechanism 
of a beam. 

The new measure [5] addresses all three of these issues. 
It is based on a pattern recognition scheme and uses all 
possible information associated with  an orbit in order to 
provide characterization. When tested in time-independent 
potentials it was able to characterize orbits using only 
information from 7-15 orbital periods, in most cases. The 
existing measures usually need at least 25 orbital periods 
to characterize an orbit, and quite often many more. 
Moreover, they analyze the orbit as a whole, not as 
segments: therefore their usefuleness is limited for time-
dependent characterizations. The new measure literally 
dissects the orbit into segments, and then analyzes it. 
Moreover, it provides information about the parts of 
chaotic orbits that remain sticky.  

If one makes a plot of the extrema of a signal associated 
with an orbit, it becomes obvious that a regular orbit is 
characterized by repetitive, smooth patterns [5]. On the 
other hand, there are no patterns associated with a chaotic 
orbit in the strict sense that appear in the regular orbits. 
Still, the signals of the chaotic orbits may be characterized 
by some loose patterns, which can be used to identify 
their epochs of stickiness.  

In a local level one can look for repetitive patterns in a 
rather straightforward way. For regular orbits these 
repetitions in the signals are very easy to identify. A first 
approach can be a simple definition of sequential patterns: 

 
| xk    - x1    |     ≤  irregularity degree 
| xk+1- x2    |     ≤ irregularity degree 
 . . . . . .

  
| x2k-2   - xk-1| ≤ irregularity degree 
 
where the “irregularity degree” is associated with how 

irregular a pattern is. Regular orbits are characterized by 
patterns with very small irregularity degrees.  

It has to be noted that more sophisticated patterns have 
also been found and they will be carefully presented in 
future papers. 

NUMERICAL EXPERIMENTS 
The application of the new measure in time-

independent systems is completely straightforward. The 
algorithm searches through the signal of an orbit for 
repetitive patterns. For a regular orbit the whole signal is 
characterized by repetitive patterns. For chaotic orbits 
only parts of the signal will be repetitive. One can use this 
information to construct a clear picture of the phase space. 
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The representative example is the so-called Hénon-Heiles 
potential, which was first used in the context of 
astronomy in 1963: 
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This potential is appropriate for our purposes because it 
admits significant numbers of both regular and chaotic 
orbits.   

The new method was applied to a set of 500 orbits 
which were evolved for 10 orbital periods (Figure 1) and 
then for 100 orbital periods ((Figure 2). The plot for the 
100 orbital periods is very clear. The four plots show the 
regular orbits (blue), the sticky parts of the chaotic orbits 
(green), the wildly chaotic parts of the chaotic orbits (red) 
and all of them together.  Because the new measure can 
identify chaos or regularity very early in the evolution of 
an orbit, the plot using the information from only 10 
orbital periods, although not perfect, is very decent 
compared with the one for 100 orbital periods. The basic 
regions of regularity and chaos are clearly identified. It 
has to be noted that such plots cannot be produced using 
the existing measures: many more orbital periods are 
needed.  

Moreover, most measures do not have the capabilities 
to identify stickiness. The best of them can identify only 
the very sticky regions around the regular islands. 
However the new measure was able to identify even 
relatively difficult sticky regions like the ones associated 
with the main broken separatrices of the system.   

The percentage of success for the new measure was 
computed by comparing the characterization it provides 

with the characterization by other chaotic measures like 
Lyapunov exponents or power spectra. The comparisons 
were made for different evolution times. The new 
technique is highly successful from early on in the 
evolution of the orbits. It identifies correctly 90% of the 
orbits using only the information from 10 orbital periods 
and it moves to 100% for 100 orbital periods or more. The 
orbits it fails to identify are the very sticky ones. When 
the first orbital periods of a chaotic orbit correspond to a 
sticky epoch, the measure identifies it as regular.    

TIME-DEPENDENT POTENTIALS 
The established technique for identification of chaos in 

time-dependent systems is the so-called “frozen-potentials 
method.” This method is based on the concept of freezing 
the time-dependent potential at successive moments in the 
evolution of the orbit, then evolving the orbit in that 
frozen time-independent potential, and characterizing it 
using any of the existing methods.  However this method 
may fail because it does not necessarily describe correctly 
what happens in the evolution of the time-dependent 
regime, but what happens in the corresponding time-
independent potentials. The new measure computes how 
irregular the orbit, which evolved in the time-dependent 
potential, is. The example potential was a time-dependent 
version of the dihedral potential: 
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In order to characterize the orbits in the corresponding 
frozen potentials the method of complexity was used. This 
method is based on computing the number of frequencies 
of the power spectrum of the orbit that consist 90% of the 
total power. It is obvious from the picture that the frozen-

Figure 1. Poincare section of 500 orbits in the Hénon-
Heiles potential for evolution of 10 orbital periods. Top
left: regular orbits. Top right: sticky epochs of chaotic
orbits. Bottom left: wildly chaotic parts of chaotic orbits.
Bottom right: all orbits.  

Figure 2. Same as Figure 1 but for evolution equal to 100 
orbital periods.  
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potentials method fails to identify the obvious regularity 
in the segment 354-374 (Figure 3). The new measure is 
successful and clearly identifies this segment as regular. 
Also it is obvious that the two measures agree to a good 
extent in the segment 100-250.    

The new method was also applied in one orbit evolved 
in a simulation of an N-body system (5-beamlet 
experiment) [7-8]. It is obvious that the measure identifies 
parts of the orbit that are not regular. These chaotic points 
find themselves out of a circle where the regular points 
are located (Figure 4).  
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Figure 3: Characterization of an orbit evolved in a time-
dependent version of dihedral potential. The top panel
shows the complexity (a measure of chaos) of the orbit
provided by the frozen-potentials method. The bottom
panel shows the characterization of the same orbit using
the new technique. In the middle, the left panel shows the
whole orbit, the middle panel the segment 100-250, and
the right panel the segment 354-374. It is obvious that,
although the last segment (354-374) is regular, it is
characterized as chaotic by the frozen-potentials method. 

Figure 4: Characterization of an orbit evolved in the N-
body system of the five-beamlet experiment. Top left 
panel: the regular (blue) and irregular (red) epochs in 
the evolution of the orbit.  Top right panel: plot of the 
orbit. Bottom left panel: the signal of the orbit (regular 
and irregular orbits are identified).  Bottom right panel: 
Poincare section of the orbit. It is obvious that the new 
technique is successful in identifying points of the orbit 
that behave irregularly.  
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