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Abstract

In this paper an approach to conservative integration
methods development is discussed. This problem is very
important for beam physics: from beam line synthesis up to
long time evolution simulation. This approach is based on
a Lie algebra technique. On the first step we find a special
form of decomposition for a Lie map, describing the sys-
tem under study. On the second step a researcher finds ex-
act solutions for some classes of hamiltonians in symbolic
forms. These steps allows forming an integration scheme,
which have a desired symplectic property. The additional
invariant and symmetry properties can be included using
dynamical invariants conception.

INTRODUCTION

Numerical integration algorithms play an essential role
in investigation of the long term beam particle evolution,
stability of similar process, nonlinear nonintegrable Hamil-
tonian systems. For example, as it is known, standard nu-
merical integration methods are not symplectic and this vi-
olation of the symplectic condition can lead to some false
effects, for example, spurious chaotic, dissipative behavior.

There are several approaches devoted to development of
numerical methods preserving some qualitative structure,
which inheres to the dynamical system under study. These
schemes will be noted as conservative integration schemes.
It is possible to distinguish the two following approaches:
the first is based on correcting procedure for usual numer-
ical methods for integration scheme (for example, for the
well known Runge–Kutta scheme, [1]). The second one
originates in solution description with the help of a map.
This map has all requisite properties. But its numerical re-
alization losses these properties, and it is necessary to en-
sure desired properties for a numerical variant of this map
too. In this report we take after the second approach.

It is necessary to distinguish two types of integration
schemes: “symplectic integration method” for numerical
methods which satisfy the symplectic condition exactly and
“pseudo-symplectic integration method” in the case, when
the symplectic condition is fulfilled not exactly, but with
some given accuracy. The exact symplectic schemes are
main interest of this paper.

Several symplectic integration methods have been pro-
posed in the literature (see, for example, [2, 3, 4]).

According to the notation of work [5] we will also dis-
tinguish two types of invariants: dynamical and kinemati-
cal ones. The kinematical invariants play the preferred role

in the numerical integration problem because of they de-
scribe a class of dynamical systems. After ensuring kine-
matical invariant preservation one can passes to ensuring
one or several dynamical invariants. Here there are several
approaches. The very interesting method was published by
V.I. Zubov [6]. He proposed to modify standard numeri-
cal integration methods using techniques of control theory.
This approach allows generating some conservative numer-
ical methods for any kind of invariants.

A concept of invariants allows to use the tools of sym-
metry theory permitting to write any invariant property as
an appropriate symmetry condition [7].

In this paper we consider a problem of construction of
symplectic integrators for an explicit symplectic map, gen-
erated by hamiltonian dynamical systems. It is well known
that Lie algebraic methods have found applications in ac-
celerator physics. These techniques demonstrate the advan-
tage of guaranteeing explicit approximating systems that
are also hamiltonian.

BEAM PROPAGATOR DECOMPOSITION

So, let us consider an initial problem for a system of or-
dinary differential equations for a phase vector of particles
states X:

dX
ds

= F(X, s) = J∂H(X, s)/∂X∗, X(s0) = X0, (1)

whereH(X, s) is a hamiltonian described the system under
study and J — a symplectic matrix. According to the Lie
algebraic approach eq. (1) involves the following operator
equation:

dM(s|s0)
ds

= L[F] ◦M(s|s0), M(s0|s0) = Id, (2)

where L[F] is a Lie operator, associated with a vector func-
tion F (L = F∗∂/∂X), M(s|s0) is a Lie map, generated
by eq. (1), or a beam propagator, and Id — the identical
operator. In the literature there are several types of Lie map
factorization (see, e.g. [8]). Let us consider a some another
type of map factorization — a “propagator decomposition”
of the following form

M≈MM = MM ◦ . . . ◦M1, (3)

where Mk = M[Lk] (k = 1,M ) is defined by some Lie
operator Lk = Lk[Fk] = F∗k∂/∂X, associated with ho-
mogeneous polynomials Fk (or homogeneous hamiltoni-
ans Hk(X)). The selection of these operators is defined
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according to the following condition:
Condition 1:
– the initial problem for operator differential equations

dMk

ds
= Lk ◦Mk, Mk(s0|s0) = Id, (4)

has a exact solution in some class of entire functions;
– the approximation (3) for some M has a sufficient esti-

mation.
So we have two problems: the first — to define types

of homogeneous polynomials Fk, which allow to evaluate
eq. (4) in a symbolic form, and the second — to determine
an order of approximation M for these types of Fk. The
finite productMM (see (3)) gives us a symplectic approxi-
mation for the solution of eq. (2).

Exact Solutions for Homogeneous Hamiltonians

The first mentioned problem can be solved according to
the approach, developed in the paper [9]. Using this ap-
proach one can evaluate symbolic presentation for prop-
agators for some homogeneous hamiltonians or functions
as a right side of a differential equations system. Let us
put F(X, t) = Pm(t)X[m], where the matrix Pm(t) has a
special form. This form is bound up with the problem of
symplectic factorization (see, e.g. [8, 10]).

Eq. (1) with homogeneous function F(X, s) is solved as

M◦X0 = X (X0; s | s0) =
PN (X0; s | s0)
QL (X0; s | s0)

, (5)

where PN (X0; s | s0) and QL (X0; s | s0) — vector and
scalar polynomials of N - and L-order correspondingly:

PN (X0; s | s0) =
N∑

k=0

Pk(s | s0)X
[k]
0 ,

QL (X0; s | s0) =
L∑

j=0

Q∗
j (s | s0)X

[j]
0 .

Here Pk(s | s0) and Qj(X0; s | s0) — matrix and scalar
functional coefficients. Here we suggest that there is QL �=
0 in an interesting domain of X0.

Let us consider M = Mm = exp ((s− s0)Lm), where
Lm = G∗

m(X0)∂/∂X0. Using the matrix formalism for
Lie algebraic tools [11] one can write

Mm ◦X0 = X0 +
∞∑

k=1

(s− s0)kP1k
m

k!
X[k(m−1)+1]

0 ,

where P1k
m =

k∏
j=1

G
⊕((j−1)(m−1)+1)
m , and

Mm ◦X0 =
∞∑

k=0

(s− s0)k

k!
P1k

m X[k(m−1)+1]
0 =

=
N∑

l=0

Pl
mX[l]

0

/ L∑

j=0

Q∗
jX

[j]
0 . (6)

N o t a t i o n. Expression (6) is a an extension of Padé
approximation for many-dimensional case.

So, we have

∞∑

k=0

(s− s0)k

k!
P1k

m X[k+1]
0 =

N∑

l=0

Pl
mX[l]

0

/ L∑

j=0

Q∗
jX

[j]
0 .

Introducing Ck
m = ((s− s0)/(k − 1)!) P

1 (k−1)
m one can

evaluate

Ck
m =Pk

m −
L∑

j=0

Q∗
j ⊗ Ck−j

m , 1 ≤ k ≤ N, (7)

Ck
m+

L∑

j=1

Q∗
j ⊗ Ck−j

m = 0, k > N. (8)

The knowledge of the series for Mm ◦X0, and vector co-
efficients of the denominator Qj allows us to determine
(N,L)-approximant for Mm ◦ X0 from the L first equa-
tions (8). The matrix coefficients of the numerator Pk

m are
determined from eq. (7) for 0 ≤ k ≤ N . The linear alge-
braic system (8) of the L-th order can be called a general-
ized Hankel system.

Let us consider two examples for n = 2.
Example 1. Let be m = 2, i.e. we have the following

equations (in this case the corresponding hamiltonian has
the formH3 = bx3 + ax2Px)

dx

dt
= ax2,

dPx

dt
= bx2 − 2axPx,

where the right side eq. (1) can be written as F2 = F2X[2]

with the matrix

F2 =
(

a 0 0
b −2a 0

)
.

Let be L = 1, then expression for Q1 degenerates into a
single equation

CN+1
2 = −Q∗

1 ⊗ CN
2 , where Ck+1

2 =
(s− s0)k

k!
P1k

2 .

Equations for matrix coefficients of the numerator Pk
2 , k ≥

1 can be also reduced:

Pk
2 = Ck

2 + Q∗
1 ⊗ Ck−1

2 , k ≥ 1.

With regard to the expressions for P1k
2 , one can write the

following recurrent formula for Ck
2 :

Ck
2 =

1
k − 1

Ck−1
2 G

⊕(k−1)
2 .

For guaranteeing required accuracy of the presentation one
has to put the following condition:

CN+1
2 + Q∗

1 ⊗ CN
2 = 0.

The expressions for matrices Pk
2 (k = 1, 4) can be obtained

using direct evaluations:

P0
2 = 0, P1

2 = E, P2
2 = G2 + Q∗

1 ⊗ E,
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P3
2 =

1
2

C2
2G⊕2

2 +Q∗
1⊗C2

2, P4
2 =

1
3

C3
mG⊕3

2 +Q∗
1⊗C3

2, . . .

The final solution can be written in the following form

X =
X0 + P2

2X
[2]
0 + P3

2X
[3]
0 + P4

2X
[4]
0

1 + Q∗
1X0

.

We should note that sequence breaking for Pk
2 may be not

take place. In this case instead of polynomial PN (X) one
obtains a series for some entire function P∞(X) (see an
example 2).

It is not difficult to make sure that we can easily to
evaluate solution for inverse order of phase vector com-
ponents with the help of a permutation matrix U, revers-
ing the order of phase vector components X̃ = UX:
F̃m(X) = Fm(X̃) = UFmU−[m]X̃[m] = F̃mX̃[m]. In
our case it is corresponds to transfer from hamiltonian
H3 = bx3 + ax2Px to hamiltonian H̃3 = axP 2

x + bP 3
x .

Example 2. The similar computations can be produced

for the case m = 3, i.e. for the function F3 = F3X[3] with
the matrix

F3 =
(

0 −4a 0 0
0 0 4a 0

)
= 4a

(
O1 I O1

)
,

where Ok is a matrix 2 × k with zero elements, I =(−1 0
0 1

)
. The corresponding hamiltonian is equal to

H4 = 2ax2P 2
x . For F3 we have L = 0, and denomina-

tor is reduced to 1. It should be noted that, as we have
m = 3, then k(m − 1) + 1 = 2k + 1, and therefore the
required expression contains only odd degrees of X. After
some evaluations one can write

P2k
3 =O, P1

3 = E, P2k+1
3 =

(4a(s− s0))
k

k!
Qk, (9)

Qk =
(
Ok Ik Ok

)
, I =

(−1 0
0 1

)
. (10)

From eqs. (9), (10) there follows the required result

expLF3◦X = exp
{

4a(s− s0)IE∗2X
[2]

}
X, E2 =




0
1
0



 .

All similar evaluations can be produced in a symbolic form
(using computer algebra codes, i.e. Maple or Mathemat-
ica) for some types of homogeneous functions Fk(X). It
is not difficult to see that analogous computations can be
produced for other types of rather simple functions Fk(X)
or hamiltonians Hk(X).

Multiplication Decomposition for a Propagator

All existing multiplication decompositions are based on
the well known CBH-formula. The differences between
them consists in various forms of a Lie map presenta-
tion. One of the most popular and effective example of
decomposition is the well known Dragt–Finn factorization,

presenting an infinite product of exponential maps, asso-
ciated with homogeneous polynomials [12]. Some other
cases there use an information on corresponding Lie al-
gebra structure, i.e. Lie algebra generators. For finite-
dimensional algebras one can obtain results in the form of
finite products, otherwise he has to truncate this product
with some accuracy using only M terms. Here it can be
mentioned factorization schemes, based on approximating
decomposition (see, i.e. [3, 13]). All these representation
can be used for search of homogeneous forms of polynomi-
als. In the present work we use a combination of existing
approaches for searching of the propagator decomposition,
satisfied to the Condition 1. Corresponding computations
can be done in a symbolic form (using, for example, an-
other approaches, see i.e. [14]).

CONCLUSION

The described procedure of searching exact representa-
tion for beam propagator (generated by homogeneous poly-
nomials Fm(X) = FmX[m] (m ≥ 2) is reduced to alge-
braic manipulation on matrices Fm (compare with [15]).
These representations are symplectic. The decomposition
procedure allows to present required solutions in the form
(3). Resulting approximating propagator will be symplec-
tic as expected.
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