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Abstract

Modern ion-optical systems are used in different fields
of beam physics both independent facilities as consisting
of large machines. One of these destination is to create
beams with a desired distribution of beams particles. Of-
ten there is a need to ensure a homogeneous distribution
for a terminal beam phase portrait in a transverse configu-
ration space. This is one of problems of nonlinear aberra-
tions management. It is known that nonlinearity properties
inhere to any beam lines. Such these nonlinearities have
unremovable character, and their influence can be remove
using only special nonlinear lattice elements, which are in-
troduced artificially into the beam line. In this paper we
suggest a procedure to find necessary nonlinear correcting
control elements for purposive forming of beam particle
distribution functions.

INTRODUCTION

In this report we suggest an approach which allows to
simulate nonlinear effects and calculate parameters of ele-
ments, which correct the resulting distribution function on
demand. For the distribution function described the beam
particle at some initial moment one can uses two types of
presentations: the first of them is based on a symbolic form
for distribution function, generated form experimental data
or some another information. For example, in the case of a
symmetric character of particle distribution we can use the
following pseudo-normal distribution

f0(X) = Q2m(X)e−P2n(X), (1)

where Q2m(X), P2n(X) are polynomials of the 2m-th
and 2n-th order correspondingly. Coefficients of these
polynomials are determined from experimental data fully
or partly. In the last case the remainder coefficients can be
determined from other information or used as control pa-
rameters.

The second type uses two types of following Taylor se-
ries expansions. the first form is used in general case

f(X) = f0 +
∞∑

k=1

F∗kX
[k], (2)

where F∗k are vectors of expansion coefficients.
The second (in the case of elliptical symmetry of the

beam phase portrait) has the form

f(X) = f0 +
∞∑

k=1

akκ∗2k(X). (3)

Here κ2(X) is a quadratic form, described the phase ellip-
soid.

Let
dX
ds

= F(X,U,B, s) (4)

be a particle motion equation here we should note that s
is a length measured along the optical axis od a beam line.
Here U and B are a control function vector and a control
parameters vector correspondingly. These vectors describe
the beam line external field and installation parameters (el-
ements lengths, apertures and so on).

It is known that Eq. (4) generates a beam line propagator
M(F; s|s0), associated with the function F, between two
moments: s0 and a current s:

X(s) = M(F; s|s0) ◦X0. (5)

According to the algebraic Lie methods (see, for example,
[1]) one can write for the current distribution function as a
result of Eq. (5)

f(X, t) = f0

(
M−1 (F; s|s0) ◦X

)
. (6)

Using the matrix formalism [2] we write

X =
k∑

l=1

M
1k(F; s|s0)X

[k]
0 , (7)

where X0 is a initial phase vector, M
1k = M

1k(F, s|s0)
are two dimensional matrices describing aberrations k-th
order, generated by beam line under study known, and X[k]

are vectors of k-th order phase moments, which consist in
all monomials of k-th order). These vectors form so called
Poincare–Witt basis).

The corresponding matrices for the inverse propagator
T = M−1 can be evaluated the generalized Gauss algo-
rithm (we have to note that in this case only M

11 should be
inverted. The rest block matrices are evaluated using usual
matrix operations: multiplication and summation. So one
can write the following matrix presentation for eq. (6):

f(X, t) = f0

( ∞∑

k=0

T
1k (F; s|s0)X[k]

)
. (8)

TARGET SETTING

As it is mentioned above there are two types of distribu-
tion functions: using some formula presentation (see, for
example, (1)) or a Taylor expansion (see (2), (3)). Accord-
ing to our goal we should introduce an information on a
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terminal distribution function in the form similar Eq. 1) ei-
ther similar Eqs. (2), (3). Let denote the desired terminal
distribution function as fdes(X, sterm), sterm — a termi-
nal value of the independent variable s.

The main our aim is to ensure the following equality

f(X, sterm) = f0

(
M−1 (F; sterm|s0) ◦X

)
(9)

for a given initial distribution function f0 and some control
vectors U and B. These vectors we note as Uopt and Bopt.

The Choice of a Control Vector

The guiding external electromagnetic field in beam lines
is distributed along the optical axis of the system and in
most cases admits the following expansion (for example,
in the case of magnetostatics)

B(x, y, s) =
∞∑

k,j=0

Bkj(s)
xk

k!
xj

j!
, (10)

where x, y are transverse coordinates in some coordinate
chart, associated with the beam line optical axis. After
substituting Eq. (10) into the Maxwell equations only some
independent coefficients are remained in the in the expan-
sion (10). For example, for a focusing system, consisting
in quadrupole and octupole lenses we can obtain

Bx = y

(
kx −

k′′x
12

(3x2 + y2)
)

+

+ ηy(x2 − 3y2)/3 +O(5),

By = −x

(
kx −

k′′x
12

(x2 + 3y2)
)

+

+ ηx(y2 − 3x2)/3 +O(5),

Bs = k′xxy +O(5).

Here kx = qG/m0cβγ for a magnetic quadrupole lens,
G = ∂Bx/∂y|x=y=0 = ∂By/∂x|x=y=0, and as a octupole
lens force η = (q/m0cβγ) ∂3By/∂x3

∣∣
x=y=0

.
In this case we have two control functions u1(s) =

kx(s) and u2(s) = η(s), which form the control vector
U(u1, u2)∗. The s dependence of ui are determined by the
character of fringe fields for control elements (in our exam-
ple, quadrupole and octupole lenses). We can approximate
the fringe fields using some model functions. Here there
are several possibilities:

• the rectangular approximation (or piece-wise approx-
imation)

u(s) =
{
ui, si ≤ s < si+1, i = 1, n

• a special model approximation functions f(A, s),
where A is a parameter vector, determining the cor-
responding function.

In the first case instead of a single control function u(s)
one obtains a vector of parameters U = {ui}i=1,n. In the
second variant we use the vector A as a control parameter
vector U = A.

In the both cases the number of control parameters is de-
termined from an approximation condition. For example,
using the model function of the sinus-like form we have
only four control parameters

ufringe(s) = a ∗ sin(α ∗ s + β) + b,

which can be expressed using the maximal value of the lens
force umax, the length of the fringe field sectors (Lleft and
Lright and the location of this control element. We should
note that in this case we present u(s) = kx(s) in the form
(see fig. 1).

u(s) =






uleft, s ∈ [domain of the left fringe field]

umax, s ∈ [domain of the central part field]

uright, s ∈ [domain of the right fringe field].

So in any case one reduce the search problem of control
function to search problem of control parameters, and our
problem is reduced to nonlinear programming one.

The Solution Algorithms

So we have some collection of control parameters, which
provide a beam evolution. These parameters should be
found from the condition (9) using some nonlinear pro-
gramming methods. In this paper we use (including some
additional equality and inequality constraints) so called
flexible tolerance method (see, for example, [3]).

Let us consider (as a simple example) the problem of
distribution function uniformity (in the transverse configu-
ration space {x, y}). In this case one should find the cor-
recting octupole lenses, which guarantee the uniform dis-
tribution function for a nuclear microprobe [4].

As an initial distribution function we choose a normal
function

f0(X) = f0e
(−κ2/2σ), κ2 = X∗

SX, (11)

where S is the correlation matrix (so called σ-matrix). As
a starting focusing channel for the nuclear microprobe we

Figure 1: An example of lens force distribution.
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consider a system of four quadrupole lenses, but for all that
we take into account nonlinear aberrations up to third order.
In this case the matrix formalism gives for the phase vector
X.

X(sterm) = M
11(sterm|s0)X0 + M

13(sterm|s0)X
[3]
0 .

This transformation leads to some distortions of the initial
(normal) distribution. As a desired terminal distribution we
choose almost uniform distribution. For the solution the
formulated problem it is more convenient to use the Taylor
expansions of two described types (see eq. (2), (3)). In the
case of simultaneous influence of the quadrupole and oc-
tupole lenses the last equation can be rewritten in the fol-
lowing form

X(sterm) = M
11(sterm|s0)X0+

+
(
M

13
quad(sterm|s0) + M

13
oct(sterm|s0)

)
X[3]

0 . (12)

This presentation allows us to apply different approaches.
Here we consider two different methods. the first of them
is based on enough traditional methods of nonlinear pro-
gramming (see, for example, [3]). The second — on the
correction procedure [5], which uses all advantages of the
matrix formalism.

Let us give some primary features of our approach. On
the first step one should to single out some supreme distor-
tions, leading to nonhomogeneity of the resulting distribu-
tion function (at least in the frame of some approximation).
On this step an investigator must study what kind of ele-
ments m13

ik of the aberration matrix M
13
oct play a vital part.

Let be the number of these equal to M. In this case (if this
number is not too large) we have to introduce M correcting
elements (in our case — octupole lenses).

On the next step, according to the correction procedure
[5], we compute some auxiliary matrices M

13
oct j , j = 1,M

and M
13
quad, which computed in the case of durante ab-

sentia of octupole correcting lenses. The matrix M
13
j ,

j = 1,M is computed on conditions that: all octupole lens
forces are equal zero with the exception of octupole lens
force of the j-th lens, for it we suppose ηj = 1. After this
procedure we build a new a vector and matrix:

B =





b1

b2

...
bM



 , A =





a11 a12 . . . a1M

a21 a22 . . . a2M

. . . . . .
aM1 aM2 . . . aMM



 .

Here ai,k, i, k = 1,M are equal to the selected matrix el-
ements of the M13 according to next rule: the number of
matrix line i is corresponds to number of octupole lens with
nonzero force ηi = 1. Another words the i-th line consists
on selected matrix elements (arranged according to usual
lexicographical order) of the matrix M

13
oct in the case of

ηk = 0, ∀k �= j, ηj = 1. For searching of the desired cor-
recting octupole forces ηi, i = 1,M we should solve the
next linear algebraic equation

Aη = B, η = (η1, . . . , ηM)∗ .

COMPUTATIONAL EXPERIMENTS

The corresponding computational experiments were car-
ried out both for the first approach based on the nonlinear
programming methods and on the above described correct-
ing procedure. The first approach does not need previous
investigation, what elements of the aberration matrix M

13

exert influence on a character of the distribution function at
the moment sterm. But at the same time in this case com-
putational burden are more sufficient.

The second approach is more convenient from computa-
tional point of view but it demands some previous compu-
tational experiments. Here we should note, that as compu-
tational experience becomes available the preliminary costs
become progressively smaller. On the fig. 4 one can see the
result of correction procedure for some model of a nuclear
microprobe using four correcting octupole lenses. Here we
did not reach good quality of the focusing properties as in
[5]. As one can see from comparison of the last figures (in
this case demagnification coefficient is equal to 6. If this
demagnification is insufficient, then we have to introduce
into the correcting system some additional octupoles.

Figure 3:

in
transverse configuration
space{x,y}.
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