A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    


Paper Title Other Keywords Page
RPAP039 Accelerator and Ion Beam Tradeoffs for Studies of Warm Dense Matter ion, target, emittance, plasma 2568
  • J.J. Barnard, D. A. Callahan, A. Friedman, R.W. Lee, M. Tabak
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  • R.C. Davidson, L. Grisham
    PPPL, Princeton, New Jersey
  • E. P. Lee, B. G. Logan, P. Santhanam, A. Sessler, J.W.  Staples, J.S. Wurtele, S. Yu
    LBNL, Berkeley, California
  • C. L. Olson
    Sandia National Laboratories, Albuquerque, New Mexico
  • D. Rose, D.R. Welch
    ATK-MR, Albuquerque, New Mexico
  Funding: Work performed under the auspices of the U.S. Department of Energy under University of California contract W-7405-ENG-48 at LLNL, University of California contract DE-AC03-76SF00098 at LBNL, and contract DEFG0295ER40919 at PPPL.

One approach to heat a target to "Warm Dense Matter" conditions (similar, for example, to the interiors of giant planets or certain stages in Inertial Confinement Fusion targets), is to use intense ion beams as the heating source. By consideration of ion beam phase space constraints, both at the injector, and at the final focus, and consideration of simple equations of state, approximate conditions at a target foil may be calculated. Thus target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We examine the variation in target performance as a function of various beam and accelerator parameters, in the context of several different accelerator concepts, recently proposed for WDM studies.