Accelerator Technology

Cryogenic Systems and Technology

Paper Title Page
WPAE001 Helium Distribution for the Superconducting Devices in NSRRC 758
 
  • F.-Z. Hsiao, S. H. Chang, W. S. Chiou, H.C. Li
    NSRRC, Hsinchu
 
  In NSRRC up to five superconducting magnets and one superconducting cavity will be installed in the storage ring. At current stage two superconducting magnets and one superconducting cavity are kept in cold condition by one 450W helium cryogenic system. The crucial stable cryogenic condition required from the superconducting cavity is hard to achieve due to the join of superconducting magnets. A second cryogenic system dedicated for the superconducting magnets is planned in the next stage. A switch valve box serves the function for the backup of two cryogenic systems for each other and a 100 meter nitrogen-shielding helium transfer line dedicated for the five superconducting magnets are installed at end of the year 2004. This paper presents the helium distribution design of the two cryogenic systems and the commission result of the recent work.  
WPAE002 Safety Management for the Cryogenic System of Superconducting RF System 832
 
  • S.-P. Kao, C.R. Chen, F.-Z. Hsiao, J.P. Wang
    NSRRC, Hsinchu
 
  The installation of the helium cryogenic system for the superconducting RF cavity and magnet were finished in the National Synchrotron Radiation Research Center (NSRRC) at the end of October 2002. The first phase of this program will be commissioned at the end of 2004. This was the first large scale cryogenic system in Taiwan. The major hazards to personnel are cryogenic burn and oxygen deficient. To avoid the injury of the operators and meet the requirements of local laws and regulations, some safety measures must be adopted. This paper will illustrate the methods of risk evaluation and the safety control programs taken at NSRRC to avoid and reduce the hazards from the cryogenic system of the superconducting RF cavity and magnet system.  
WPAE003 The Cryogenic Supervision System in NSRRC 844
 
  • H.C. Li, S. H. Chang, W. S. Chiou, F.-Z. Hsiao, Z.-D. Tsai
    NSRRC, Hsinchu
 
  The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system’s real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.  
WPAE005 Status of the Cryogenic System Commissioning at SNS 970
 
  • F. Casagrande, I.E. Campisi, P.A. Gurd, D.R. Hatfield, M.P. Howell, D. Stout, W.H. Strong
    ORNL, Oak Ridge, Tennessee
  • D. Arenius, J.C. Creel, K. Dixon, V. Ganni, P.K. Knudsen
    Jefferson Lab, Newport News, Virginia
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge

The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.