A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yoon, P.S.

Paper Title Page
TPAT015 Simulations of Error-Induced Beam Degradation in Fermilab's Booster Synchrotron 1458
 
  • P.S. Yoon
    Rochester University, Rochester, New York
  • C.L. Bohn
    Northern Illinois University, DeKalb, Illinois
  • W. Chou
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the University Research Association, Inc. under U.S. Department of Energy (DOE) contract No. DE-AC02-76-CH03000, and by DOE grant No. DE-FG02-04ER41323 to NIU, and by DOE grant No. DE-FG02-91ER40685 to University of Rochester.

Individual particle orbits in a beam will respond to both external focusing and accelerating forces as well as internal space-charge forces. The external forces will reflect unavoidable systematic and random machine errors, or imperfections, such as jitter in magnet and radio-frequency power supplies, as well as magnet translation and rotation alignment errors. The beam responds in a self-consistent fashion to these errors; they continually do work on the beam and thereby act as a constant source of energy input. Consequently, halo formation and emittnace growth can be induced, resulting in beam degradation and loss. We have upgraded the ORBIT-FNAL package and used it to compute effects of machine errors on emittance dilution and halo formation in the existing FNAL-Booster synchrotron. This package can be applied to study other synchrotrons and storage rings, as well.

 
FPAE011 8 GeV H- Ions: Transport and Injection 1222
 
  • W. Chou, A.I. Drozhdin, C. Hill, M.A. Kostin, J.-F. Ostiguy, Z. Tang
    Fermilab, Batavia, Illinois
  • H.C. Bryant
    UNM, Albuquerque, New Mexico
  • R.J. Macek
    LANL, Los Alamos, New Mexico
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • P.S. Yoon
    Rochester University, Rochester, New York
 
  Funding: Work supported by the Universities Research Association, INC. under contract with the U.S. Department of Energy NO. DE-AC02-76CH03000.

Fermilab is working on the design of an 8 GeV superconducting RF H- linac called the Proton Driver. The energy of the H- beam is an order of magnitude higher than any existing H- beams. This brings up a number of new challenges to the transport, stripping and injection into the next machine (the Main Injector), such as blackbody radiation stripping, magnetic field and residual gas stripping, Stark states of hydrogen atoms, foil stripping efficiency, single and multiple Coulomb scattering, energy deposition, foil heating and stress, radiation activation, collimation, jitter correction, etc. This paper will give a summary of these studies.*

*For details the reader is referred to FERMILAB-TM-2285-AD-T.