A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Xiao, M.

Paper Title Page
MPPE051 Phase Trombone Program Migration for the Recycler at Fermilab 3135
 
  • M. Xiao
    Fermilab, Batavia, Illinois
 
  In the Recycler Ring, a phase trombone is used to control tunes. 9 pairs of independently power supplied adjustable quadruples are located in RR-60 straight section. They are segmented into 5 families currently to maintain a symmetrical structure. By adjusting these circuits, a tune variation of up to ±0.5 units is attainable. These adjustments are coordinated in such a way that the Twiss parameters at the ends of the straight section keep unchanged. A new phase trombone program is written in C and is integrated into the data acquisition program in CNS. This program now gets rid of network communication, and does not need to run code MAD. In this report, a test program written in Mathematic is described, and several matching conditions for the Twiss parameters are compared. Test results for the setting and measured tune values using running program on console are presented.  
MPPE052 Study on Coupling Issues in the Recycler at Fermilab 3209
 
  • M. Xiao, Y. Alexahin, D.E. Johnson, M.-J. Yang
    Fermilab, Batavia, Illinois
 
  We have been working and trying to answer the following questions: where are the coupling sources in the Recycler and is the existing correcting system working fine? In this paper, we report the analysis on the sources from both modeling by code MAD based on nonlinear lattice and real machine. From the first turn flesh orbit, we fit the off-plane orbits by third order polynomial, then separate 1st, 2nd and 3rd order coefficients to see different effects. On the other hand, we present the analysis from turn by turn data, which is to verify the phase of two skew quads families are more or less orthogonal, and to make sure the minimum tune split is small enough, and is consistent with the measurement.  
MPPE084 Multipole error Analysis Using Local 3-Bump Orbit Data in Fermilab Recycler 4144
 
  • M.-J. Yang, M. Xiao
    Fermilab, Batavia, Illinois
 
  The magnetic harmonic errors of the Fermilab Recycler ring were examined using circulating beam data taken with closed local orbit bumps. Data was first parsed into harmonic orbits of first, second, and third order. Each of which was analyzed for sources of magnetic errors of corresponding order. This study was made possible only with the incredible resolution of a new BPM system that was commissioned after June of 2003.  
FPAE013 Calculation of the Orbit Length Change of the Recycler Due to Main Injector Ramp 1318
 
  • M. Xiao
    Fermilab, Batavia, Illinois
 
  Orbit length of beam in the Recycler changes during the Main Injector ramps. The unknown kicks from the effects generated by stray field are distributed around the ring. To estimate the changes, simulated virtual kicks are created around each lambson, C-magnet and bus cable of the Main Injector. The orbit lengths are calculated from measurements of evolution frequency and transverse beam positions. A BPM system distributed throughout the Recycler lattice in both Horizontal and vertical planes are used to take the closed orbit measurement during the ramps. The calculation method and the results of the orbit length changes and the strength of the simulated kicks are presented in this report.