A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Vane, C.R.

Paper Title Page
TPPE019 Laser Ion Source Development for ISOL Systems at RIA 1640
 
  • Y. Liu, C. Baktash, J.R. Beene, H. Z. Bilheux, C.C. Havener, H.F. Krause, D.R. Schultz, D.W. Stracener, C.R. Vane
    ORNL, Oak Ridge, Tennessee
  • K. Brueck, Ch. Geppert, T. Kessler, K. Wendt
    Johannes Gutenberg University Mainz, Mainz
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

The isobaric purity of radioactive ion beams (RIBs) is of crucial importance to many experiments. Laser ion sources based on resonant photoionization have already proved to be of great value at existing ISOL RIB facilities. In these ion sources, ions of a selected isotope are produced by laser radiation via stepwise atomic resonant excitations followed by ionization in the last transition. Because each element has its own unique atomic energy levels, the resonant photoionization process can provide elemental selectivity of nearly 100%. We have initiated a research effort to develop a prototype laser ion source with the potential to achieve the high selectivity and high efficiency required for research with ISOL-generated RIBs at the Rare Isotope Accelerator (RIA). A pilot experiment has been conducted to demonstrate resonant photoionization of three atomic species using all-solid-state tunable Ti:Sapphire lasers. Three Ti:Sapphire lasers were provided by the University of Mainz and used in the experiment for three-photon resonant ionization of the elements. Laser generated Sn, Ni, and Ge ions have been successfully obtained in a hot-cavity laser ion source with overall efficiencies of 22%, 2.7%, and 3.3%, respectively.