A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Toyokawa, H.

Paper Title Page
RPAE078 Commissioning of SAGA Light Source 4021
 
  • T. Tomimasu, Y. Iwasaki, S. Koda, Y. Takabayashi, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • H. Toyokawa, M.Y. Yasumoto
    AIST, Ibaraki
 
  The SAGA Light Source (SAGA-LS) consists of a 250-MeV electron linac injector and an eight-hold symmetry 1.4-GeV storage ring with eight double-bend (DB) cell and eight 2.93-m long straight sections. The DB cell structure with a distributed dispersion system was chosen to produce a compact ring of 75.6-m long circumference. The machine construction begun September 29, 2003. The ring magnets of steel laminated structure, vacuum chambers made of aluminum alloy, pumping systems and four temperature controlled cooling water systems for the linac accelerating wave guides etc. were installed in March, 2004. The injector, a 500-MHz ring rf damped cavity, rf klystrons, beam transport systems for injection and their controlled systems were installed in July, 2004. The commissioning begun August 25, 2004. A 250-MeV beam was accelerated on September 29. The beam size is 1-mm in diameter and the energy spread is 0.8 % (FWHM). The first revolution of 250-MeV beam around the ring took place October 22. Beam was stored on November 12. The commissioning continues for beam storage and ramping to 1.4-GeV. We report a brief description of SAGA light source and early commissioning activities.  
FPAT076 PC-LabView Based Control System in SAGA-LS 3976
 
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • Y. Iwasaki, S. Koda, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Toyokawa
    AIST, Ibaraki
 
  A control system for SAGA Synchrotron Light Source (SAGA-LS) has been constructed. SAGA-LS is a small-medium size light source and is run by local government, which means there are a few number of staff in the laboratory. Thus the control system must be simple and robust, while inexpensive, easy to develop and maintain. The basic ideas of the system are 1) using PCs to build a low cost control system, 2) using off-shelf devices, FieldPoint (National Instrument) and PLCs, (FA-M3, Yokogawa), for robust and replaceable system, 3) using LabView for a quick in-house system development, 4) using channel access protocol between server and client to transparent from regular EPICS utilities, 5) using ActiveX CA to emulate the CA protocol. About 1,000 PVs are employed to control the magnet power supplies, the RF control sub-system, vacuum monitors, BPM data and several LCW data. The system has been operated and tuned at the beginning of the commissioning, spring 2004. MySQL database system also archives data to assist daily operation and to display the trend chart of the machine. The database applications developed by LabView, too.