A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Thompson, D.H.

Paper Title Page
RPPE021 The SNS Machine Protection System: Early Commissioning Results and Future Plans 1727
 
  • C. Sibley III, D.J. Armstrong, A. Jones, T.A. Justice, D.H. Thompson
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source under construction in Oak Ridge TN has commissioned low power beam up to 187 Mev. The number of MPS inputs is about 20% of the final number envisioned. Start-up problems, including noise and false trips, have largely been overcome by replacing copper with fiber and adding filters as required. Initial recovery time from Machine Protection System (MPS) trips was slow due to a hierarchy of latched inputs in the system: at the device level, at the MPS input layer, and at the operator interface level. By reprogramming the MPS FPGA such that all resets were at the input devices, MPS availability improved to acceptable levels. For early commissioning MPS inputs will be limited to beam line devices that will prohibit beam operation. For later operation, the number of MPS inputs will increase both software alarms and less intrusive MPS inputs such as steering magnets are implemented. Two upgrades to SNS are on the horizon: a 3 MW upgrade and a second target station. Although these are years away the MPS system as designed should easily accommodate the increase in power and pulse-to-pulse target switching at 120 Hz.

Work supported by the U.S. Department of Energy under contract DE-AC05-00OR22725.

 
FPAT053 LabVIEW Library to EPICS Channel Access 3233
 
  • A.V. Liyu
    RAS/INR, Moscow
  • W. Blokland, D.H. Thompson
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. Data acquisition hardware will be based on PCI cards. There will be about 300 rack-mounted computers. The Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) is the SNS control system communication standard. This paper describes the approaches, implementation, and features of LabVIEW library to CA for Windows, Linux, and Mac OS X. We also discuss how the library implements the asynchronous CA monitor routine using LabVIEW’s occurrence mechanism instead of a callback function (which is not available in LabVIEW). The library is used to acquire accelerator data and applications have been built on this library for console display and data-logging.