A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tagawa, S.

Paper Title Page
WPAP017 Experimental Observation of a 100-Femtosecond Single Electron Bunch in Photocathode Linac with Longitudinal Emittance Compensation Technique 1546
 
  • J. Yang
    RCNP, Osaka
  • K. Kan, T. Kondoh, T. Kozawa, S. Tagawa, Y. Yoshida
    ISIR, Osaka
 
  The realization of a 100fs electron pulse is important for the studies of ultrafast physical/chemical phenoena with a pump-probe method. We have developed a photocathode linear accelerator (linac) to generate such electron pulse with a magnetic pulse compressor. The nonlinear effect of the magnetic fields in the pulse compression was compensated carefully by optimizing the magnetic fields and the booster linac RF phase. A 105fs(rms) electron bunch with electron charge of 0.1nC was observed experimentally by using a femtosecond streak camera. The beam energy was 35MeV, and the normalized teraservers emittance was lower than 3mm-mrad. The dependences of the pulse length and the emittance on the electron charge were also measured and compared with the theoretical calculations.  
WPAP018 Generation of Double-Decker Femtosecond Electron Beams in a Photoinjector 1604
 
  • J. Yang, K. Kan, T. Kondoh, T. Kozawa, Y. Kuroda, S. Tagawa, Y. Yoshida
    ISIR, Osaka
 
  The femtosecond electron beam is a practical source in the pump-probe experiment for studies of ultrafast physical/chemical reactions in materials, in which a mode-locked ultrashort laser light is used as a probe source. The synchronized time jitter between the electron beam and the laser light limits the time resolution in the experiment. In order to reduce the time jitter, a new concept of synchronized double-decker electron beam generation in a photoinjector was proposed. The double electron beams were observed in an S-band photocathode RF gun by injecting two laser beams which produced with a picosecond laser. The double electron beams were compressed into 400fs(rms) with a phase-space rotation technique in magnetic fields. The beams, which one is used as a pump source and another is used as a probe source, are expected for ultrafast reaction studies in femtosecond resolution.  
RPAP038 An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis 2533
 
  • T. Kondoh, T. Kozawa, S. Tagawa, T. Tomosada, J. Yang, Y. Yoshida
    ISIR, Osaka
 
  Funding: Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the ‘Equivalent velocity spectroscopy’ method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electron pulse shape. Thus, the 'Equivalent velocity spectroscopy’ is effective for femtosecond pulse radiolysis.